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The Erdos Renyi model

The E-R model.

A = (Axy )x ,y∈[N] ∈ {0,1}N×N is the adjacency matrix of the
homogeneous Erdős-Rényi graph

N vertices
each edge e ∈ G with probability pN = dN

N .

We also consider the “centered matrix” A = A−E(A).

Question : what can we say about its eigenvalues?
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Random matrices and semi-circle law.

Dans le cas symmétrique, qu’est ce qu’on peut dire du spectre de X?
(Ou plutôt de 1√

N
X car E( 1

NTr(X 2
ij )) = N)

(Xij uniform) (Xij normal law) (Xij Bernoulli law)

Semi-circle law

The density of the eigenvalues of 1√
N
X converge to the semi-circle law

µsc(x) =

√
4−x2

2π
1[−2,2](x)dx
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The Erdos Renyi model

The semi-circle law
In the regime d ≡ dN → ∞ as N → ∞, the empirical eigenvalue measure
of A/

√
d converges to the semicircle law supported on [−2,2].

Question : Are there any eigenvalues outside the bulk [−2,2]?
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Statistics of the degree of the vertices in the critical regime
d = b log(N)

Connectivity transition in the Erdos Renyi graph:
If d ≤ log(N)− ..., there exists some isolated vertices.
If d ≥ log(N) + ..., there is no isolated vertices.

Degree statistic : (Consider N, iid Poisson variables of parameter d)
For any x and α > 1

P(Dx ≥ αd)≈ exp(−dh(α)) = N−b·h(α)

with h(α) = α log(α)−α +1, d = b · log(N).

The number of large degree vertices is

#[x ∈ [N] : Dx ≥ αd ]≈ N(1−b·h(α))

The maximal degree Dmax = αmaxd satisfies 1−b ·h(αmax) = 0.
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Statistics of the degree of the vertices in the critical regime
d ∝ log(N)

The number of large degree vertices is

#[x ∈ [N] : Dx ≥ αd ]≈ N(1−b·h(α))

The maximal degree Dmax = αmaxd satisfies 1−b ·h(αmax) = 0.

Degree distribution for d = 10 logN and for d = logN
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Main (first) result

λ1 ≥ λ2 ≥ ·· · ≥ λl > 2+o(1) the largest eigenvalue of A/
√
d ,

λN ≤ ·· · ≤ λN−l+1 ≤−2−o(1) the smallest eigenvalues.
α1 ≥ α2 ≥ ·· · ≥ αl ≥ 2 the largest degrees (Di = αid) of the E-R
graph.

Correspondance large eigenvalue-large degree (D, Alt, Knowles)

For all i ≤ l
|λi −Λ(αi )| ≤ o(1),

|λN−i+1 + Λ(αi )| ≤ o(1),

with Λ(α) = α√
α−1

.

Corollaire : Transition for the spectrum

There exists eigenvalues outside of the bulk iif αmax > 2 iif
d < d∗ = 1

2 log(2)−1 log(N)≈ 2.58 · · · log(N).

11/28



Main (first) result

λ1 ≥ λ2 ≥ ·· · ≥ λl > 2+o(1) the largest eigenvalue of A/
√
d ,

λN ≤ ·· · ≤ λN−l+1 ≤−2−o(1) the smallest eigenvalues.
α1 ≥ α2 ≥ ·· · ≥ αl ≥ 2 the largest degrees (Di = αid) of the E-R
graph.

Correspondance large eigenvalue-large degree (D, Alt, Knowles)

For all i ≤ l
|λi −Λ(αi )| ≤ o(1),

|λN−i+1 + Λ(αi )| ≤ o(1),

with Λ(α) = α√
α−1

.

Corollaire : Transition for the spectrum

There exists eigenvalues outside of the bulk iif αmax > 2 iif
d < d∗ = 1

2 log(2)−1 log(N)≈ 2.58 · · · log(N).

11/28



A small numerical simulation.

We can calculate Λ(αmax) with αmax solution of 1− ch(αmax) = 0.

Figure: The largest eigenvalue with N = 1000, d = c log(N) and the theorical
prediction.
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A small numerical simulation.
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Main results : The localized and delocalized spectrum
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(semi-localization) An ideal regular tree

With the basis (1Si (x)/‖1Si (x)‖)i :

1√
d
U−1AU =


0

√
αx√

αx 0 1

1 0
. . .

. . . 0



Lemma
Its spectrum is

[−2,2] if αx ≤ 2,
{±Λ(αx )}∪ [−2,2] if αx > 2.

with Λ(α) = α√
α−1

. Moreover in the seconde case the corresponding

eigenvector (u) satisfies ui = γ
i−1
λ

u1 , |γλ |< 1.
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(semi-localization) In the E-R graph

Proposition

The Erdos Renyi graph on the ball of radius r is “close” to the regular
tree.

Let x with Dx > 2d . We define with Si (x) the sphere in the Erdos Renyi
graph,

u = ∑
i≤r

ui
1Si (x)√
|Si (x)|

A candidate eigenvector

‖
( 1√

d
A−Λ(αx )

)
u‖= o(1)

Corollary

There exists an eigenvalue λ of 1√
d
A with |Λ(αx )−λ |= o(1).
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(semi-localization) An upper bound

Moment method

For B the nonbacktracking matrix associated with A/
√
d

E(Tr(B l (B∗)l )) = O((1+o(1))l )

for all l ∼
√
d log(n)

Corollary

ρ(B)≤ 1+o(1)

An “Ihara-Bass formula” Spectrum of B↔ Spectrum of A
18/28
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Localization or Delocalization ?

The Anderson Model.
Physical prediction : Anderson (1958), Mott (1960’s)
Proof of localization at the edge and at strong disorder : J.
Fröhlich-T. Spencer (1983), Aizenman-Molchanov (1993).
Proof of delocalization still OPEN.

Random matrices.
(Trivial) Delocalization for Gaussian matrices.
For generalized Wigner matrix : Erdos-Yau-... (2009-...). Sparce
random matrices (Knowles)

Band matrices
localization/Delocalization transition predicted B ∼

√
N

On Trees
localization and delocalization phases M. Aizenman and S. Warzel
(2006).
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[A.,D.,K.] Delocalization transition of critical Erdős-Rényi
graphs

Phase transition

Let u an eigenvector with eigenvalue λ :
(Delocalized Phase) For λ outside [−2,2]/{0} then
‖u‖2L∞ = O(N−1+o(1)).

(Semilocalized Phase) For |λ |> 2 then ‖u‖2L∞ ≥ N−ρ(λ )+o(1).

ρ(λ)
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[A.,D.,K.] Delocalization transition of critical Erdős-Rényi
graphs

Phase transition

Let u an eigenvector with eigenvalue λ :
(Delocalized Phase) For λ outside [−2,2]/{0} then
‖u‖2L∞ = O(N−1+o(1)).
(Semilocalized Phase) For |λ |> 2, u is a linear combination of
vectors supported on balls around the vertices of large degree.
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(delocalization phase) A local law

For z ∈ C,ℑ(z) = η > 0, G = G (z) = ( 1√
d
A− z)−1

η
−1|φi (x)|2 ≤ max

ℜz∈R
ℑ∑

j

|φj (x)|2

(λj − z)
= max

ℜz∈R
ℑGxx

Local law

For all z ∈ C with ℜz ∈ (−2+ ε,−ε)∪ (ε,2− ε) and ℑz > N−1+ε we
have

max
x ,y
|Gxy (z)−δxymαx (z)|= o(1)

where m(z) =− 1
z+m(z) and mα (z) =− 1

z+αm(z) .

Corollary

|φi (x)|2 = O(N−1+ε ).
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(delocalization phase) Sketch of the proof of the local law

Schur complement formula

1
Gxx

=−z− 1
d ∑

y∈S1(x)

G
(x)
yy +o(1),

1
m(z)

=−z−m(z).

“Local law steps”
1 Here one has to restrict to typical vertices T ⊂[N].
2

| 1
d ∑

y∈S1(x)

Gyy −
1
N ∑

y∈[N]

Gyy |= o(1)

3 This implicite solution is “stable” around Gxx = m(z) .

Corollary

| 1
N ∑

y∈[N]

Gyy −m(z)|= o(1)
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Fluctuation of the largest eigenvalue

We define dh(αmax) = logN and Λmax := Λ(αmax).

Theorem
Around Λmax the spectrum of converge to a Poisson point process. The
density is explicit and we have

P(
λ1−Λmax

d
≤ t)→ exp(−F (t))
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Strong localization?

Localization

(Work in progress) Do we have complete localization in the semilocalized
phase ?
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Thank you for your attention
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