Nonlocal pulling in reaction–diffusion equations CY Days in Nonlinear Analysis

Léo Girardin

CNRS, Institut Camille Jordan, Univ. Claude Bernard Lyon-1

March 28th, 2022

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Conclusion

Introduction

Reaction-diffusion equations

$$\begin{cases} \partial_t u - \Delta u = f(u) & \text{in } (0, +\infty) \times \mathbb{R}^n \\ u(0, \cdot) = u_0 \ge 0 \end{cases}$$

$$u_0$$
 and f regular, $f(0) = 0$, $f(u) < 0$ if $u > 1$

Basic properties

Consequences of the parabolic comparison principle: nonnegativity, well-posedness, **spreading** depending on f, u_0

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Spreading speeds

Definition

Minimal spreading speed:

$$\underline{c^{\star}} = \sup\left\{c \ge 0 \mid \lim_{t \to +\infty} \inf_{0 \le |x| \le ct} u(t, x) > 0\right\}$$

Maximal spreading speed:

$$\overline{c^{\star}} = \inf \left\{ c \ge 0 \mid \lim_{t \to +\infty} \sup_{ct \le |x|} u(t, x) = 0 \right\}$$

 $[\underline{c^{\star}},\overline{c^{\star}}] \subset [0,+\infty]$ depends on u_0

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

From compactly supported initial data

If u_0 compactly supported, then by comparison with a linear parabolic equation, $\overline{c^\star} < +\infty$

Numerical observation for many natural fConvergence $u(t,x) \rightarrow U(|x| - c^*t + o(t))$ to a planar traveling wave with speed $c^* = \underline{c^*} = \overline{c^*}$ and profile U satisfying $U(+\infty) = 0$ and $\liminf_{-\infty} U > 0$

Isotropy of c^* : from now on, restriction to 1D

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Pulled fronts vs. pushed fronts Stokes, *Math. Bio.*, 1976

Definition: the linearly determined speed c_{lin}

Smallest nonnegative real number $c\geq 0$ such that the stationary linearized equation at $u\simeq 0$ in the moving frame x-ct,

-u''-cu'=f'(0)u,

admits positive solutions decaying to 0 at $+\infty$

Definition: pulled and pushed fronts

The front u(t, x) with spreading speed c^* emanating from u_0 compactly supported is:

▶ pulled if $c^* = c_{\text{lin}}$

▶ pushed otherwise (and then $c^* > c_{lin}$)

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Equivalent definition: inside dynamics

Garnier, Giletti, Hamel, Roques, JMPA, 2012

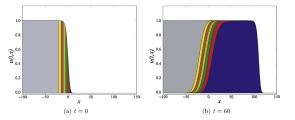


Figure: Pulled fronts: only leading individuals matter

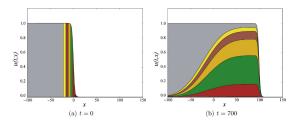


Figure: Pushed fronts: all individuals matter

Nonlocal pulling in reaction–diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Example: the Fisher–KPP equation Fisher, 1937; Kolmogorov, Petrovskii, Piskunov, 1937

$$\partial_t u - d\partial_{xx} u = ru(1-u)$$

Model in population genetics, population dynamics d, r > 0 (without loss of generality r = d = 1 possible) ODE: u = 0 unstable, u = 1 stable

Theorem: spreading, pulling, convergence $c^* = c_{\text{lin}} = 2\sqrt{rd}$ and moreover $\lim_{t \to +\infty} \sup_{|x| < (2\sqrt{rd} - \varepsilon)t} |1 - u(t, x)| = 0$ Nonlocal pulling in reaction-diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Example: the Fisher-KPP equation

Finding the linearly determined speed

Linearization at $u \simeq 0$ in the moving frame z = x - ct, $c \ge 0$:

$$\partial_t u - d\partial_{zz} u - c\partial_z u = ru$$

Stationary problem: -du'' - cu' = ru

Exponential ansatz: $u(z) = \exp(\mu z)$, $\mu \in \mathbb{C}$

Dispersion relation: $d\mu^2 + c\mu + r = 0$

 $\mu_{\pm} \in \mathbb{R}$ iff $c \geq 2\sqrt{rd}$ and then $\mu_{\pm} < 0$: $c_{\text{lin}} = 2\sqrt{rd}$

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Example: the Fisher-KPP equation

Solving the resulting problem

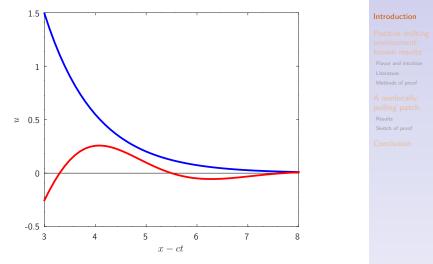


Figure: Solutions of -u'' - cu' = u for c = 2 (blue), c = 1.4 (red)

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

Example: the Fisher–KPP equation

Building super- and sub-solution candidates

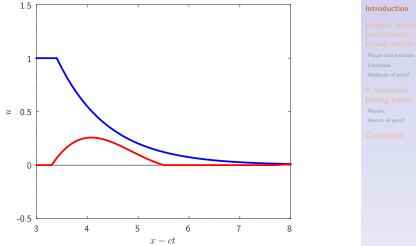


Figure: Super- and sub-solution candidates (blue and red resp.)

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

Example: the Fisher–KPP equation Validating the super- and sub-solution candidates

Validation of the super-solution moving at speed $c = 2\sqrt{rd}$:

$$\partial_t \overline{u} - d\partial_{xx} \overline{u} = r\overline{u} \ge r\overline{u}(1 - \overline{u})$$

 $\overline{u} \ge u$ at t = 0: up to changing 1 by $\max(\max(u_0), 1)$

Nonlocal pulling in reaction–diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Example: the Fisher–KPP equation Validating the super- and sub-solution candidates

Validation of the super-solution moving at speed $c = 2\sqrt{rd}$:

$$\partial_t \overline{u} - d\partial_{xx} \overline{u} = r\overline{u} \ge r\overline{u}(1 - \overline{u})$$

 $\overline{u} \geq u$ at t = 0: up to changing 1 by $\max(\max(u_0), 1)$

Validation of a perturbed sub-solution moving at speed $c \in (0, 2\sqrt{rd})$ with a small parameter $\delta > 0$ such that $c^2 - 4(1-\delta)rd < 0$ remains true:

$$\partial_t \underline{u} - d\partial_{xx} \underline{u} = (1 - \delta) r \underline{u} \le r \underline{u} (1 - \underline{u}) \quad \text{provided } \underline{u} \le \delta$$

 $\underline{u} \leq u$ at t=1: up to decreasing δ again

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally oulling patch Results Sketch of proof

Example: the Fisher-KPP equation

Using the super- and sub-solutions as barriers

From the super-solution with $c = 2\sqrt{rd}$:

$$\forall c' > 2\sqrt{rd} \quad \lim_{t \to +\infty} \sup_{|x| > c't} u(t,x) = 0 \implies \overline{c^\star} \leq 2\sqrt{rd}$$

From the family of sub-solutions with $c < 2\sqrt{rd}$, $c \simeq 2\sqrt{rd}$: $\forall c' \in (0, 2\sqrt{rd}) \quad \liminf_{t \to +\infty} \inf_{|x| < c't} u(t, x) > 0 \implies \underline{c^{\star}} \ge 2\sqrt{rd}$

Convergence to 1 in $\{|x| < (2\sqrt{rd} - \varepsilon)t\}$: Liouville-type result on uniformly positive entire solutions Nonlocal pulling in reaction-diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Pushed examples

Monostable equation with strong convexity at the origin

$$\partial_t u - \partial_{xx} u = u(u+\alpha)(1-u), \quad \alpha \in \left[0, \frac{1}{2}\right)$$

$$c_{\sf lin} = 2\sqrt{lpha}$$
 but $c^\star = rac{\sqrt{2}(1+2lpha)}{2} > 2\sqrt{lpha}$

Proof failure: when validating the super-solution

Bistable equation

$$\partial_t u - \partial_{xx} u = u(1-u)(u-\theta), \quad \theta \in \left(0, \frac{1}{2}\right)$$

 $c_{\text{lin}} = 0$ but $c^{\star} = \frac{\sqrt{2}(1-2\theta)}{2}$ (large u_0) or extinction (small u_0)

Proof failure: when constructing the sub-solution and when validating the super-solution

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Extension to more general media?

Heterogeneous Fisher-KPP equation

$$\partial_t u - \partial_{xx} u = f(u, t, x)$$

with assumptions on f generalizing $f(\boldsymbol{u})=\boldsymbol{u}(1-\boldsymbol{u});$ for simplicity, focus on

$$f(u,t,x) = r(t,x)u(1-u) \quad \text{or} \quad u(r(t,x)-u)$$

The sign of r matters (a lot)

- Negative r: extinction, no spreading
- Positive r: spreading, no extinction
- Sign-changing r: case-by-case

Focus on spreading properties: from now on, $\inf_{(t,x)\in (0,+\infty)\times \mathbb{R}} r(t,x)>0$

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Positive heterogeneous environments

By comparison,
$$0 < 2\sqrt{\inf r} \le \underline{c^\star} \le \overline{c^\star} \le 2\sqrt{\sup r} < +\infty$$

Toward a generalization of the homogeneous Fisher–KPP result

- Equality $\underline{c^{\star}} = \overline{c^{\star}}$? Estimates?
- Definition and calculation of c_{lin}?
- Equivalence of the two definitions of pulled & pushed?
- If not, other regimes?

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

The easiest case

Berestycki, Hamel, Nadin, J. Func. Anal., 2008

Confined heterogeneities

r(t,x) independent of (t,x) if |x|>R or t>T

- $c^{\star}=2\sqrt{r(T+1,R+1)}$ and with minimal adaptation:
 - pulled in the sense of Stokes
 - pulled in the sense of Garnier et al.

Only leading individuals matter, and leading individuals only feel the asymptotic growth rate

Nonlocal pulling in reaction–diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally oulling patch Results Sketch of proof

A complicated case

Garnier, Giletti, Nadin, JDDE, 2012

An environment oscillating slower and slower $r(t,x) = r(x) = R(\phi(x))$ with R periodic, $\phi' > 0$, $\lim_{x \to +\infty} \phi(x) = +\infty$, $\lim_{x \to +\infty} x \phi'(x) = 0$

Oscillations of the rightward spreading speed:

$$\underline{c^\star} = 2\sqrt{\min R} < \overline{c^\star} = 2\sqrt{\max R}$$

Pulled? Pushed?

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

An important class

Environmental change with constant speed $r(x - c_{het}t)$ with $c_{het} \ge 0$

Arise naturally in:

- climate change models
- river models
- systems of reaction-diffusion equations

Analysis in a moving frame... but which one?

Nonlocal pulling in reaction–diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Positive shifting environment: known results

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results Flavor and intuition Literature

A nonlocally pulling patch Results Sketch of proof

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results

Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Conclusion

Flavor and intuition: the simplest case

The simplest example of shifting medium

Piecewise-constant shifting medium with one jump

$$f(u,t,x) = r(x - c_{\mathsf{het}}t)u(1-u)$$

$$r = r_1 \mathbf{1}_{(-\infty,0)} + r_2 \mathbf{1}_{[0,+\infty)}, \quad c_{\mathsf{het}} \ge 0$$

Expectation:

•
$$c_{\text{left}}^{\star} = 2\sqrt{r_1}$$

• $c_{\text{right}}^{\star} = 2\sqrt{r_2}$ if c_{het} small – how small?
• $c_{\text{right}}^{\star} = 2\sqrt{r_1}$ if c_{het} large – how large?
And in between?

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results

Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

The decreasing case

Theorem: if $r_1 > r_2$, locking occurs in between If $r_1 > r_2$, $c^{\star}_{\text{left}} = 2\sqrt{r_1}$ and

$$c_{\mathsf{right}}^{\star} = \begin{cases} 2\sqrt{r_2} & \text{if } c_{\mathsf{het}} < 2\sqrt{r_2} \\ 2\sqrt{r_1} & \text{if } c_{\mathsf{het}} > 2\sqrt{r_1} \\ c_{\mathsf{het}} & \text{if } c_{\mathsf{het}} \in [2\sqrt{r_2}, 2\sqrt{r_1}] \end{cases}$$

Locking: invasion front located at the environmental heterogeneity

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

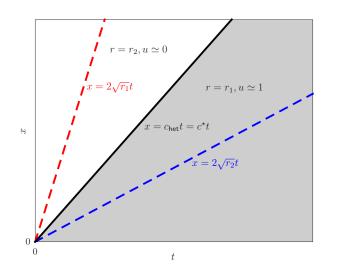
ntroduction

Positive shifting environment: known results Flavor and intuition

Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Illustration: a locked front



Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results

Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Conclusion

Figure: Spreading in (t, x)-plane $(r_1 = 4, r_2 = 1/9, c_{het} = \sqrt{2})$

Illustration: pulling-locking-pulling

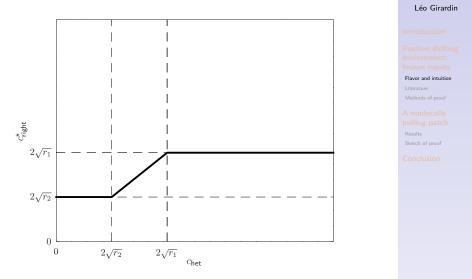


Figure: The spreading speed as function of the environmental speed ($r_1=4,\,r_2=1$)

Nonlocal pulling in

reaction-diffusion equations

The increasing case

Theorem: if $r_1 < r_2$, nonlocal pulling occurs in between If $r_1 < r_2$, $c^{\star}_{\text{left}} = 2\sqrt{r_1}$ and

$$c_{\text{right}}^{\star} = \begin{cases} 2\sqrt{r_2} & \text{if } c_{\text{het}} < 2\sqrt{r_2} \\ 2\sqrt{r_1} & \text{if } c_{\text{het}} > 2\sqrt{r_1} + 2\sqrt{r_2 - r_1} \\ F(c_{\text{het}}) & \text{if } c_{\text{het}} \in [2\sqrt{r_2}, 2\sqrt{r_1} + 2\sqrt{r_2 - r_1}] \end{cases}$$

with
$$F(c_{\text{het}}) = \frac{c_{\text{het}} - 2\sqrt{r_2 - r_1}}{2} + \frac{2r_1}{c_{\text{het}} - 2\sqrt{r_2 - r_1}}$$

Nonlocal pulling: invasion front slower than the environmental heterogeneity, so $r = r_1$ around the front, but still $c^* > 2\sqrt{r_1}$ due to the advantageous exponential tail ahead of the heterogeneity

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

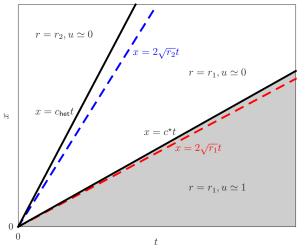
ntroduction

Positive shifting environment: known results Flavor and intuition

Methods of proof

A nonlocally pulling patch Results Sketch of proof

Illustration: a nonlocally pulled front



Léo Girardin

Positive shifting environment: known results Flavor and intuition

Nonlocal pulling in

reaction-diffusion equations

Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Conclusion

Figure: Spreading in (t, x)-plane $(r_1 = 1/9, r_2 = 1, c_{het} \simeq 2.37)$

Illustration: pulling-nonlocal pulling-pulling

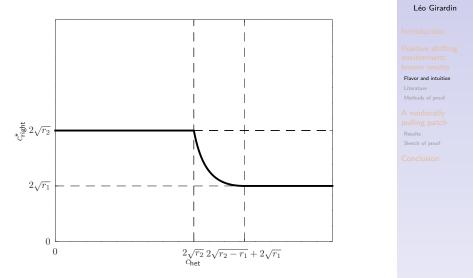


Figure: The spreading speed as function of the environmental speed ($r_1 = 1, r_2 = 4$)

Nonlocal pulling in

reaction-diffusion equations

Relation with pushed and pulled fronts

Expectations/conjectures

Locked fronts:

- pushed in the sense of Garnier et al.
- but pulled(*ish*) in the sense of Stokes Nonlocally pulled fronts:
 - > pulled in the sense of Garnier et al.
 - but pushed(ish) in the sense of Stokes

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results

Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Relation with pushed and pulled fronts

Expectations/conjectures

Locked fronts:

- pushed in the sense of Garnier et al.
- but pulled(*ish*) in the sense of Stokes Nonlocally pulled fronts:
 - > pulled in the sense of Garnier et al.
 - but pushed(ish) in the sense of Stokes

"Whatever the case may be – and we admit that insisting on such a classification is somewhat pedantic – we see that novel modes of invasion exist" – M. Holzer, A. Scheel, 2014 Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results

Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

How to predict $c^{\star} = F(c_{\text{het}})$ (1/2)

Change of variable $x = y + c_{het}t$:

$$\partial_t u - \partial_{yy} u - c_{\mathsf{het}} \partial_y u = r(y)u(1-u)$$

 $r = r_1 \mathbf{1}_{(-\infty,0)} + r_2 \mathbf{1}_{[0,+\infty)}$

Educated guess in the wake of the heterogeneity (y < 0)u converges to a traveling wave with speed $c^* > 2\sqrt{r_1}$, that decays like $e^{-\mu(y-(c^*-c_{het})t)}$ with $\mu = \frac{1}{2} \left(c^* - \sqrt{(c^*)^2 - 4r_1}\right)$ solution of $\mu^2 - c^*\mu + r_1 = 0$

Educated guess ahead of the heterogeneity (y > 0)Since $c^* < c_{het}$, $u^2 \ll u$, whence u behaves like $-\left(\frac{y^2}{4t} + \frac{c_{het}}{2}y - \frac{4r_2 - c_{het}^2}{4}t\right) + o(t)$ Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results Flavor and intuition

Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

How to predict $c^* = F(c_{het})$ (2/2) Matching asymptotics at y = 0:

$$\left(\frac{c_{\mathsf{het}}}{2}\right)^2 - 2\mu \frac{c_{\mathsf{het}}}{2} + \mu c^* - r_2 = 0$$

$$\implies \frac{c_{\text{het}}}{2} = \mu \pm \sqrt{\mu^2 - \mu c^* + r_2} = \mu \pm \sqrt{r_2 - r_1}$$

Continuity of $c^{\star}(c_{het})$ at $c_{het} = 2\sqrt{r_2}$:

$$c^{\star}(c_{\mathsf{het}}) = 2\sqrt{r_2} \implies \mu = \sqrt{r_2} - \sqrt{r_2 - r_1}$$

Inversion of $\mu(c^{\star}) = \frac{c_{\text{het}}}{2} - \sqrt{r_2 - r_1}$:

$$\mu(c^{\star})^2 - c^{\star}\mu(c^{\star}) + r_1 = 0 \iff c^{\star}(\mu) = \mu + \frac{r_1}{\mu}$$

Conclusion

$$c^{\star} = F(c_{\mathsf{het}}) = \frac{c_{\mathsf{het}} - 2\sqrt{r_2 - r_1}}{2} + \frac{2r_1}{c_{\mathsf{het}} - 2\sqrt{r_2 - r_1}}$$

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results

Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results Flavor and intuition

Literature Methods of proo

A nonlocally pulling patch Results Sketch of proof

Conclusion

Literature

First heuristics

Venegas-Ortiz, Allen, Evans, Genetics, 2014

Model for horizontally transmitted hitchhiking traits

$$\begin{cases} \partial_t u = \partial_{xx} u + u(1 - u - v) - \beta u + \gamma uv & \text{(carriers)} \\ \partial_t v = \partial_{xx} v + v(1 - u - v) + \beta u - \gamma uv & \text{(non-carriers)} \end{cases}$$

Transformation w = u + v:

$$\begin{cases} \partial_t u = \partial_{xx} u + u(1 - \beta - \gamma u - (1 - \gamma)w) \\ \partial_t w = \partial_{xx} w + w(1 - w) \end{cases}$$

►
$$c_w^{\star} = 2$$

► $\{x \gg 2t\}$: u feels $r_2 = 1 - \beta > 0$
► $\{x \ll 2t\}$: u feels $r_1 = \gamma - \beta > 0$
► If $\beta < \gamma < 1$, nonlocal pulling of u predicted
ncorrect result for c_u^{\star} (wrong ansatz ahead of $x = 2t$)

Nonlocal pulling in reaction—diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results Flavor and intuition Literature

A nonlocally pulling patch Results Sketch of proof

First rigorous analysis Holzer, Scheel, *SIAM J. Math. Anal.*, 2014

Triangular ad-hoc system

$$\begin{cases} \partial_t u = \partial_{xx} u + u(1-u) \\ \partial_t v = d\partial_{xx} v + g(u)v - v^3 \end{cases}$$

$$\blacktriangleright c_u^{\star} = 2$$

▶
$$g_{|[0,1]} > 0$$
, $g'(1) < 0$, $2\sqrt{dg(1)}, 2\sqrt{dg(0)} < 2$

- ▶ c^{*}_v = 2 locked if some principal eigenvalue positive Proof: dynamical system approach
- Nonlocal pulling of v if principal eigenvalue in an interval (λ_{crit}, 0)
 Proof: super-sub-solution (cooperative system)
- ► Claim: $c_v^{\star} = 2\sqrt{dg(1)}$ locally pulled if principal eigenvalue smaller than λ_{crit}

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results Flavor and intuition

Methods of proof

A nonlocally pulling patch Results Sketch of proof

First exhibition in a classical model Girardin, Lam, Proc. of the London Math. Soc., 2019

2-species Lotka–Volterra competition–diffusion system

$$\begin{cases} \partial_t u = \partial_{xx} u + u(1 - u - av) \\ \partial_t v = d\partial_{xx} v + rv(1 - v - bu) \end{cases}$$

▶ 0 < a < 1 < b: monostable strong-weak competition

▶ $2\sqrt{rd} > 2$: v weaker competitor but faster spreader

•
$$c_v^{\star} = 2\sqrt{rd}$$
 (coupling: not trivial)

- Local front for u pushed or pulled (Lewis et al., J. Math. Biol., 2002)
- Nonlocal pulling of u iff local front slower Proof: super-sub-solution for 2-species competitive systems

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results Flavor and intuition

Methods of proof

```
A nonlocally
pulling patch
Results
Sketch of proof
```

First exhibition in a classical model

Girardin, Lam, Proc. of the London Math. Soc., 2019

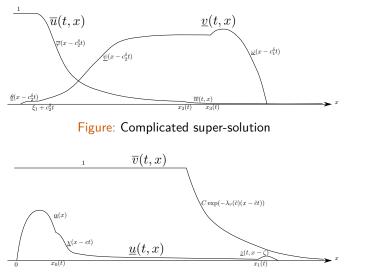


Figure: Complicated sub-solution

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results Flavor and intuition Literature

Methods of proof

A nonlocally pulling patch Results Sketch of proof

Since 2019

- WKB–Hamilton–Jacobi approach for 2-species competitive systems: Liu, Liu, Lam, DCDS-A, 2020
- Predator-prey system with 2 predators and 1 prey: Ducrot, Giletti, Guo, Shimojo, Nonlinearity, 2020
- Partial results for 3-species competitive systems: Liu, Liu, Lam, JDE, 2021
- Single equation with shifting diffusivity: Faye, Giletti, Holzer, DCDS-S, 2021
- WKB–Hamilton–Jacobi approach for general scalar equations with shifting growth rate: Lam, Yu, preprint, 2021
- SIR system with arbitrarily many spreading epidemics: Ducasse, Nordmann, in preparation

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results Flavor and intuition

Methods of proof

A nonlocally pulling patch Results Sketch of proof

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results Flavor and intuition Literature

Methods of proof

A nonlocally pulling patch Results Sketch of proof

Conclusion

Methods of proof

The two known methods and their limitations

Super-sub-solution construction

- Comparison principle required
- Complicated constructions

WKB-Hamilton-Jacobi approach

- Cannot deal with areas of sub-linear size that might increase nonlocal pulling
- Cannot deal with locally pushed fronts

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

A nonlocally pulling patch

Work in progress with T. Giletti, H. Matano

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch

Results Sketch of proo

A not-so-simple shifting medium

Piecewise-constant shifting medium with two jumps and a higher central patch

$$f(u,t,x) = r(x-c_{\mathsf{het}}t)u(1-u) \quad \text{or} \quad u(r(x-c_{\mathsf{het}}t)-u)$$

$$r = r_1 \mathbf{1}_{(-\infty,0)} + r_2 \mathbf{1}_{[0,L)} + r_3 \mathbf{1}_{[L,+\infty)}, \quad c_{\mathsf{het}} \ge 0, \quad L > 0$$

Higher central patch: $r_2 > \max(r_1, r_3)$

Cannot be analyzed by WKB-Hamilton-Jacobi approach

Expectation (focusing on rightward spreading):

•
$$c^{\star} = 2\sqrt{r_3}$$
 if c_{het} small – how small?

▶
$$c^{\star} = 2\sqrt{r_1}$$
 if c_{het} large – how large?

And in between? Impact of r_2 , L?

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch

Results Sketch of proc

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally oulling patch

Results Sketch of proof

Conclusion

Results

Two important quantities

Critical length \underline{L}

$$\underline{L} = \begin{cases} 0 & \text{if } r_1 = r_3 \\ \frac{1}{\sqrt{r_2 - \max(r_1, r_3)}} \operatorname{arccot} \left(\sqrt{\frac{r_2 - \max(r_1, r_3)}{|r_1 - r_3|}} \right) & \text{if } r_1 \neq r_3 \end{cases}$$

where
$$\operatorname{arccot} = (\operatorname{cot}_{|(0,\pi)})^{-1}$$

Generalized principal eigenvalue λ_1 1. If $r_1 > r_3$ and $L \le \underline{L}$, $\lambda_1 = -r_1$; 2. If $r_1 < r_3$ and $L \le \underline{L}$, $\lambda_1 = -r_3$; 3. If $r_1 = r_3$ or $L > \underline{L}$, λ_1 unique solution in $\left(-r_2, \min\left(-\max\left(r_1, r_3\right), \frac{\pi^2}{L^2} - r_2\right)\right)$ of $\cot(L\sqrt{r_2 + \lambda_1}) = \frac{r_2 + \lambda_1 - \sqrt{(r_1 + \lambda_1)(r_3 + \lambda_1)}}{\sqrt{r_2 + \lambda_1}(\sqrt{-r_1 - \lambda_1} + \sqrt{-r_3 - \lambda_1})}$

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally oulling patch

Results Sketch of proof

Main result

Theorem: locking and nonlocal pulling occur in between

$$c^{\star} = \begin{cases} 2\sqrt{r_{3}} & \text{if } c_{\text{het}} < 2\sqrt{r_{3}} \\ c_{\text{het}} & \text{if } 2\sqrt{r_{3}} \le c_{\text{het}} \le 2\sqrt{-\lambda_{1}} \\ F(c_{\text{het}}) & \text{if } 2\sqrt{-\lambda_{1}} < c_{\text{het}} < 2\sqrt{-\lambda_{1}} - r_{1} + 2\sqrt{r_{1}} \\ 2\sqrt{r_{1}} & \text{if } 2\sqrt{-\lambda_{1} - r_{1}} + 2\sqrt{r_{1}} \le c_{\text{het}} \end{cases}$$

with
$$F(c_{het}) = \frac{c_{het} - 2\sqrt{-\lambda_1 - r_1}}{2} + \frac{2r_1}{c_{het} - 2\sqrt{-\lambda_1 - r_1}}$$

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

nonlocally ulling patch

Results Sketch of proof

Nonlocal pulling in Illustration: case $r_3 < r_1$ and $L \leq \underline{L}$ reaction-diffusion equations Léo Girardin *0 Results $2\sqrt{r_1}$ $2\sqrt{r_3}$ 0 $2\sqrt{r_3}$ $2\sqrt{r_1}$

 c_{het}

Figure: The spreading speed as function of the environmental speed ($r_1 = 4$, $r_3 = 1$, $r_2 = 9$, $\lambda_1 = -4$)

Illustration: case $r_3 < r_1$ and $L > \underline{L}$

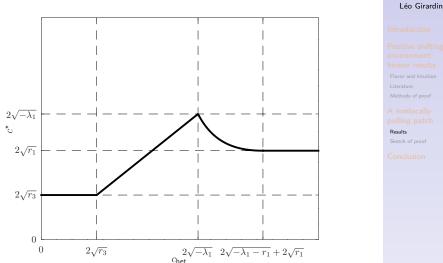


Figure: The spreading speed as function of the environmental speed ($r_1 = 4$, $r_3 = 1$, $r_2 = 9$, $\lambda_1 = -8$)

Nonlocal pulling in reaction-diffusion equations

Nonlocal pulling in Illustration: case $r_1 < r_3$ and $L \leq \underline{L}$ reaction-diffusion equations Léo Girardin * $2\sqrt{r_3}$ Results $2\sqrt{r_1}$ 0 $\frac{2\sqrt{r_3}}{c_{\mathsf{het}}} 2\sqrt{r_3 - r_1} + 2\sqrt{r_1}$

Figure: The spreading speed as function of the environmental speed ($r_1 = 1$, $r_3 = 4$, $r_2 = 9$, $\lambda_1 = -4$)

Illustration: case $r_1 < r_3$ and $L > \underline{L}$

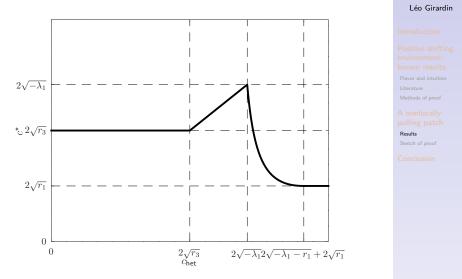


Figure: The spreading speed as function of the environmental speed ($r_1 = 1$, $r_3 = 4$, $r_2 = 9$, $\lambda_1 = -8$)

Nonlocal pulling in reaction-diffusion equations Illustration: case $r_1 = r_3$

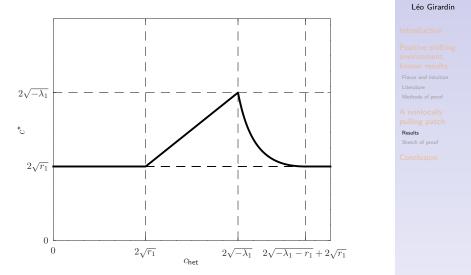


Figure: The spreading speed as function of the environmental speed ($r_1 = r_3 = 1$, $r_2 = 9$, $\lambda_1 = -4$)

49 / 59

Nonlocal pulling in reaction-diffusion equations

Dependency of the spreading speed on other parameters

- c* as function of λ₁: explicit closed-form formula, Lipschitz-continuous (only)
- c^{*} or λ₁ as functions of L or r₂: monotonic and continuous but otherwise implicit

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally oulling patch

Results Sketch of proof

Illustration

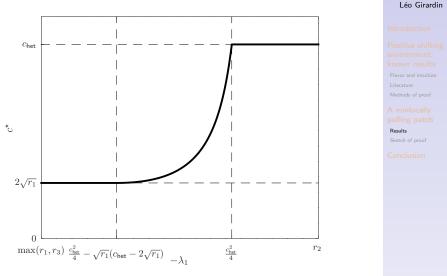


Figure: The spreading speed as function of the generalized principal eigenvalue ($r_1 = 1$, $r_2 = 16$, $r_3 = 4$, $c_{het} = 7$)

51 / 59

Nonlocal pulling in reaction-diffusion equations

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Conclusion

Sketch of proof

In the moving frame $x - c_{het}t$ Change of variable:

$$v(t,y) = u\left(t, Ly + c_{\mathsf{het}}t\right) \mathsf{e}^{\frac{c_{\mathsf{het}}^2 t}{4} + \frac{c_{\mathsf{het}}Ly}{2}}$$

Linearization at $v \simeq 0$:

$$\partial_t v - \frac{1}{L^2} \partial_{yy} v = m(y) v$$

with
$$m(y) = r_1 \mathbf{1}_{y < 0} + r_2 \mathbf{1}_{0 \le y < 1} + r_3 \mathbf{1}_{1 \le y}$$

Reminder

When
$$r_2 = r_3$$
, $v(t, y) \sim e^{r_2 t}$

Educated guess

$$v(t,y) \sim e^{-\lambda_1 t} \varphi_1(y)$$
 where (λ_1,φ_1) principal eigenpair of $-\mathcal{L} = -L^{-2} \partial_{yy} - m$

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Generalized principal eigenproblem Berestycki, Rossi, *CPAM*, 2015

$$\begin{cases} -\mathcal{L}\varphi = \lambda\varphi & \text{in } \mathbb{R} \\ \varphi > 0 & \text{in } \mathbb{R} \end{cases}$$

Krein-Rutman-type uniqueness despite the compactness default?

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Generalized principal eigenproblem Berestycki, Rossi, *CPAM*, 2015

$$\begin{cases} -\mathcal{L}\varphi = \lambda\varphi & \text{in } \mathbb{R} \\ \varphi > 0 & \text{in } \mathbb{R} \end{cases}$$

Krein-Rutman-type uniqueness despite the compactness default?

No: the set of generalized principal eigenvalues has the form $(-\infty,\lambda_1]$

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Generalized principal eigenproblem

Characterizations of λ_1 :

$$\begin{split} \lambda_1 &= \sup \left\{ \lambda \in \mathbb{R} \mid \exists \varphi > 0 \ -\mathcal{L}\varphi \geq \lambda \varphi \right\} \\ &= \lim_{R \to +\infty} \lambda_{1,\mathsf{Dir}}(-\mathcal{L}, B(0,R)) \end{split}$$

Properties

For
$$\mathcal{L} = L^{-2}\partial_{yy} + m$$
,

- 1. $\lambda_1 \in [-r_2, -\max(r_1, r_3)]$
- 2. given (λ, φ) , if φ bounded or if $\lambda = -\max(r_1, r_3)$, then $\lambda = \lambda_1$
- 3. in both cases, explicit construction of (λ_1, φ_1) (C^1 regularity)

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

- Positive shifting environment: known results Flavor and intuition Literature Methods of proof
- A nonlocally pulling patch Results Sketch of proof

Super-sub-solution

Construction in the nonlocally pulled regime

Gluing KPP semi-linear super-sub-solutions in $\{y<0\}$ and rescaled linear super-sub-solutions in $\{y>0\}$

Validation in the nonlocally pulled regime

- ▶ Condition for super-solution in $\{y > 0\}$: $c > F(c_{het})$
- ▶ Condition for sub-solution in $\{y > 0\}$: $c < F(c_{het})$
- Angle conditions (super-solution \land , sub-solution \lor) at y = 0: redundant

Outside of the nonlocally pulled regime: more standard super-sub-solutions

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Conclusion

57 / 59

Summary

- Pulled vs. pushed dichotomy in homogeneous media
- New regimes in shifting media (climate change, rivers, systems): locked, nonlocally pulled
- Nonlocal pulling: active research topic since 2014
- Explicit formula for the nonlocally pulled speed
- 2 methods of proof with pros & cons

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

Introduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Perspectives — The end

- Shifting patch with time-dependent length and speed
- Smooth variations of the growth rate
- Inside dynamics of locked and nonlocally pulled fronts
- ▶ Position of level sets $X(t) = c^*t + o(t) = ...?$
- Long-term goal: application to systems

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

Positive shifting environment: known results Flavor and intuition Literature Methods of proof

A nonlocally pulling patch Results Sketch of proof

Reaction-diffusion equations

$$\begin{cases} \partial_t u - \Delta u = f(u) & \text{in } (0, +\infty) \times \mathbb{R}^n \\ u(0, \cdot) = u_0 \ge 0 \end{cases}$$

Special solutions

$$\blacktriangleright u_0 = 0: u = 0$$

►
$$u_0 = M > 0$$
: $\limsup_{t \to +\infty} \sup_{x \in \mathbb{R}^n} u(t, x) \le 1$

•
$$u_0 = \delta_0$$
 and $r = \sup \frac{f(u)}{u}$: for $t \ge 1$,

$$u(t,x) \leq \frac{1}{(4\pi t)^{n/2}} \mathsf{e}^{-\frac{|x|^2}{4dt} + rt} \leq C \mathsf{e}^{-C'(|x|^2 - 4rdt^2)}$$

Consequences

Nonnegativity, well-posedness, possible spreading

Nonlocal pulling in reaction-diffusion equations

Léo Girardin

ntroduction

- Positive shifting environment: known results Flavor and intuition Literature Methods of proof
- A nonlocally pulling patch Results Sketch of proof