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Plan of this talk

. Phenomenology of disordered lattices:

* positive temperature

e zero temperature (spreading of a wave packet)
. New results for the spreading of the wave packet
. Mathematical results at positive temperature

. Sub-diffusion (if there is some time left)



Anderson localization
In classical chains of

oscillators



The system

Classical Hamiltonian for N coupled oscillators in 14

N
1
o Z px + wqu + 8(qrs1 — %c) + )\qi')

harmonic anharmonic

where (wy), are i.i.d.
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Anderson insulator : A=0

Let us decompose H = Hy+ AH;

(<p7p> T <Q7 (V o gA)Q>)

1
HO:E

with : V., = 6, ,w?
A the lattice Laplacian

(-,-) the scalar product on R"

We recognize the Anderson operator V - gA in 14
all eigenstates are localized !



Localized dynamics

Eigenstates of V - gA look like this:

1 N

E(Z|<va><E,y>|) < Ce /s

E
Kunz et Souillard ‘80

As a result, the dynamics of the chain is frozen.
Let us see this in two set-ups.



1) Positive temperature : No transport
Connecting the system with heat baths
s g 1 MMM A 4 N IR

yields an energy flows J from hot to cold, but
J ~ AT x e N/¢

For comparison, in ‘usual’ diffusive systems, we expect

AT
J ~ —
N



2) Zero temperature : No spreading

An initially localized wave packet...

g

... does never spread over time

i




W
hat happens when
A>0"7



Adding anharmonic interactions : A>0

Common expectations:

* No MBL for classical systems: anharmonic interactions
destroy Anderson localization. Main reason: chaotic spots

* Very slow processes involved in the limit A= 0. Transport
hard to quantify in this regime

* Positive temperature: thermal conductivity is normal

e Positive temperature: sub-diffusion in some (very)
oarticular cases

* /ero temperature: Initially localized wave packet
spreads sub-diffusively



Normal conductivity...

numerical results for our model:
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« Even a small amont of anharmonicity leads to a J~1/N
dependence, implying diffusive transport of energy. »

A. Dhar and J.L. Lebowitz, PRL (2008)




...but very slow rate as A—=0

Numerics in a classical spin chain:
jEI- p— :E::A:LL%KE;X;'+_ )\E;Xf. E;x}+-1
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« This suggests that the asymptotic behavior at small interaction A
may be some sort of exponential, rather than power-law behavior. »

V. Oganesyan, A. Pal and D. Huse, PRB (2009)



In agreement with analytic predictions

Theoretical predictions in the Discrete Non-Linear Schrédinger
(DNLS) lattice. Expected to hold for our model as well :

D(A)— 0 faster than any polynomial in A as A—=0:

VvneN, DA =0\") as X —0.

see D. Basko, Ann. Phys (2011),
see also S. Fishman, Y. Krivolapov and A. Soffer (2012)



Spreading: analytic predictions

Very slow spreading known rigorously (DNLS):
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This does not settle the long time behavior for fixed A.

See W.-M. Wang and Z. Zhang (2009), S. Fishman, Y. Krivolapov and A. Soffer (2012)
Possible recent improvement by H. Cong and Y. Shi (preprint 2020)



Spreading: numerics

Numerical results for our model:
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See S. Flach (2014)



Spreading: numerics vs analytic

Numerically, the spreading results in sub-diffusion with
exponent 1/3. All rigorous and analytical theories predict
that asymptotically the spreading cannot be faster than
logarithmic in time. The main difficulty is, that there is no
regime of parameters, where analytical and numerical
results agree for a long time.

From S. Fishman, Y. Krivolapov and A. Soffer (2012)

This is the thing | want to fix!



Spreading vs conductivity

Two scenarios for the ‘spreading’:

1) wandering of a hot spot
not observed

2) proper spreading of the packet

A [3

observed, but polynomial spreading clashes with
non-polynomial decay of D(A)



Why does it clash ?

Assuming some local equilibrium (tested numerically):
OE = 0i(D(T,\)0,E), T =T(E)
and T —0 as t— o
In our model: low temperature ~ small A. Actually
D(T,\) = D(T))
and it would hold that

my(t) ~ 13 = D(TA) ~ (TN* as TX— 0.






Preliminary remarks

1. The observed spreading of the wave packet is very slow:

\/le Nl‘

This might thus well be just transient.

2. | will move to a different (related) set-up, closer to
equilibrium than the spreading experiment (this allows

to use some bounds)




Breaking conservation laws

Reminder: model at A=0:

%(om + (g (v — g0)g))

= —Z (p, E)* + El(q,E)|")
— ZHE

(V—-¢A)|E) = E|E)

H

with

The energy of each mode is conserved at A=0:

dHE

= 0 VE
dt



Breaking conservation laws

Let us consider the full dynamics H = Hy + AH; and define

_ 2
1) — IZ (He(t) — Hg(0))%)r

2 var(HFg)

where (f)r denotes the Gibbs state at temperature T

1

(fir = / f(q,p)e @)/ dqap

(these are invariant states of the dynamics)



Expected behavior of /(1)

I1(0) = 0 : by definition
I(+00) = 1 :inthelarge N limit, (Hg(t); Hz(0))7 — 0 ast — oo



Scaling relation for I(t)

As for the the conductivity D, it holds actually that
I\, T;t) = I(\T;1)

It Flach’s results for the spreading are correct, we may
expect the scaling relation

I(A\T;t) = f((AT)*)

We will now

* check via numerics that it holds for some regime in AT,
 map this regime to the time horizon in spreading experiments,
e show that this scaling cannot hold as AT—0.
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Numercial results

H(OT))

AT = 0.04
AT = 0.02
AT = 0.002
AT = 0.0006
AT = 0.0004
AT = 0.0003
AT = 0.0002



Back to wave packets

Effective temperature of wave packets:
AE

3.3\/m2

[ = full energy of the packet

< >

N

AN —

Maximal values reached:
AT=0.0005 (Flach), AT=0.0002 (us)

Remark: If \/m; ~ t'/%, this requires spreading for (2/5)% ~ 250 longer times.



What is the right scaling?

We postulated that

I(AT;t) = f((AT)*)

but we can show that
vneN,3C, - I\T:1) < G, ()\2+(()\T)”t)2)

For the spreading, we infer that /mz ~ t'/% is incorrect:



Not (yet) a proper theorem

The proot is still incomplete. We need estimates on the
spectrum of the harmonic system (A=0). E.Q.:

VN > 0,Va > 0,db > 0
P(HEl,Ez,Eg,E4EJ(H ) ’E1/2+E1/2 EV? - 1/2‘ < ]%) < Ni

where H(()N) 1s the harmonic Hamiltonian restricted to a box of size N
and where we assume (E1, E») # (E3,E4) and (E», E1) # (E3, Ey).

Remark: The needed estimates are not sharp.

Some related results: Minami (1996), Klopp (2010), S. Fishman,
Y. Krivolapov and A. Soffer (2008)




Main ingredients of the proof:

1. Frequency mismatch is bad for energy transter

g
e.g.: two coupled harmonic oscillators:
Wi W2
. . 2 B
the eigenmodes are eigenstates of
g W2
they are localized if g K |w1 — w2|

2. Perturbation theory works as well w or w/o anharmonic
interactions at finite order (and this is what we need). Main
difference shows up when analyzing the convergence



Some results at positive

temperature



Thermal conductivity

Consider (almost) the same system:
[N

H = 3 > (Pr+ widh + Agrs1 — 62)° + Agy)

x=1

Recall that the energy flux is expected to scale as

o pAT
N—=""N

Green-Kubo expression for the conductivity:
NJn

= lim lim ——
PAT) = o AT

2
1 1 1] —
et (3 o))



Difficulty and way out

Problem: We don’t even know whether D(AT) < +oc

Introduce some noise such that

1) E
2) T

nergy still conserved

ne Gree-Kubo integral is convergent

3) Not too large: Hamiltonian effects dominant

E.Q.: add velocity flip

Liouville operator
Noise

L=A+~S

Sf(p.q) = Y f(-oos=par-- - q) —f(p,q)



Result

Theorem (F.H.):

TX)*"
VneN,3C,: D(TA,5) < Cn(( ) w)

In particular, with v = (TA)", we get

D(TX, (TA)") < C,(T\)"

Remark: We expect that the noise favors conduction, i.e.
D(TA,0) < C,(TN)"






Phenomenology: Ohm law

Series random resistances (i.i.d.):

I:{x—1 I:{x RX—I—‘I

Potential difference at the boundary: AV

Electrical current:




‘'standard’ case

Assume R =E(Ry) < 400

<

By the law of large numbers: J ~ =

V(x) for AV=1 and R; uniformly distributed

0 20 40 60 80 100



Heavy tails distribution

Assume R =E(Ry) = 400 (ex: Pareto)

Ri+---+R ~ maxR, ~ L2 (a > 0)

V(x) pour AV =1 et distribution de Pareto des R;

e

-

i\—\
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600

800 1000

V drops = bottleneck = larges values for R;



Behavior of the energy current

diffusive - J ~ L]
sub-diffusive: J ~ LUt a>0
localized J ~ e_"/f, >0

Remark: sub-diffusion rests here on bottlenecks (1d)
while localization is a wave phenomenon



Inspiration: quantum model

Quantum model (ex: XXZ):

L —1
— ZhSZ+JlZ SIS, +SSt,) +JZZSZ ’

S T IYSRLYYE

Phase diagram:

Anderson localized (MBL) ergodic (ETH)

0 transition Jz/W

Gornyi et al. ‘05, Basko et al. ‘06, Oganesyan et al. ‘07, Serbyn et al. '13, Huse et al. '14, Imbrie '16, etc...



transition’ inside the ergodic phase

‘ ergodic
localized sub-diffusive diffusive Jz/W
J ~ e L/t J o~ L(1+a) J ~ L1

S. Gopalakrishnan et al. ’16, D. Luitz et al. ‘16

origin of the sub-diffusive phase:
disorder fluctuations (Griffiths effects)

29
k AT
B 3 o e

blue kegions would be localized if they were isolated,
they create vey large resistances



We look for the larges résistance

L : total length

¢ :length of the largest resistance
14

< L >

¢ ~ ClnL (C — oo as one approaches the transition)
R(¢) ~ e/t

J ~ R—1 N e—(C/S)lnL _ L—C/f

C/¢ > 1 near the transition



Classical Hamiltonian with sparse interactions

= Z px+wxq§+9(qx+1 — )" + My

1<x<L*-

disordered harmonic chain anharmonic pinning

localized system interaction among modes

Ax  Bernoulli i.i.d. P\ =1)=p



Green-Kubo coefficient

2
t
oM - QLTOLI&«H VS “S)ds) >
T

1<x<L

]x = energy current between site x and x + 1

:
(Ot = Z(T) /fe_H/podq = Gibbs state

Remarks :

In general, we don't know whether D(T) < 400

Sub-diffusion if D(T) =0



Résult

Theorem (w. De Roeck, S. Olla, F. H. )
Let € be the localization length of the harmonic system. If

p < 1—e /%
then, a.s.
D(T)=20

Somewhat more quantitative estimate:

D(T) = lim @, Cit) <t’, <1

and one can estimate y as a function of p.



Other models

Similar results by B. Nachtergaele et J. Reschke sp 2021)
Analogous theorem for quantum chains (fermions or
sSpins):

1<x<L

Ongoing research to extend this result for guantum
chains with weak but non-sparse interactions

The claim is expected to be
wrong for classical systems
and weak (non-sparse) 0,
interactions: 001

N [<JN>]

cf. A. Dhar et J. Lebowitz,
PRL 2004




