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Self-dual Chern—Simons—Schrddinger equation

Chern—Simons—Schrédinger equation

The Chern—Simons—Schrédinger equation is

introduced by the physicists Jackiw and Pi '90, as a nonrelativistic Chern—Simons
gauge field theory, which admits the self-dual structure when the coupling strength
is critical.

U(1) gauge-covariant 2D cubic NLS (/9. + Ay +
cubic NLS. (symmetries/conservation laws, ...)

2 = 0), so it is similar to 2D

W

The Chern—-Simons action has been employed, for example, in condensed matter
physics to describe some planar physics, e.g., quantum Hall effect and high
temperature superconductivity.

In the self-dual case, under equivariance symmetry, CSS turns out to be an interesting
mathematical model:

o Strong rigidity in asymptotic behavior of solutions:

Soliton resolution, non-existence of bubble trees,

o Blow-up dynamics and rotational instability:

Completely different near-soliton dynamics compared to that of NLS!
Rather similar to wave maps or Schrédinger maps from R**2 into S2.
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Self-dual Chern—Simons—Schrddinger equation

Chern—-Simons—Schrédinger equation

@ Unknowns:
- matter field ¢ : R — C
- gauge fields A, : R = R, a € {¢t,1,2}.
Let Do = 0a + iAa and Fog = 0aAg — 03Aa.
@ Equation:
iDep + D;Djé + gl|*¢ = 0,
Fa = —Im(¢D29),
Fio = Im(aDub),
Fiz = =3[0,

o Self-dual case: g = 1.

o Jl2-scaling symmetry, mass/energy conservation, pseudoconformal symmetry, virial
identities, ...
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Self-dual Chern—Simons—Schrddinger equation

Coulomb gauge

Gauge invariance: ‘
(6,A) — (¢, A=dx).
We will fix the Coulomb gauge condition:

01A1 + A2 =0
o A, is determined by ¢, i.e., Aa = Aa[d]

o Hamiltonian structure: CSS reduces to a single equation of ¢
. 1
00— -Vl Elol=j [ID0f - [ ol

o LWP: H' in Coulomb gauge (Lim '18), small data H°" in the heat guage
(Liu-Smith-Tataru '14). L-critical well-posedness is still open.

@ Other known results: existence of solitons and explicit blow-up solutions, formal
derivation of log-log blow-up for g > 1, small data decay and scattering, etc.
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Self-dual Chern—Simons—Schrddinger equation

Symmetry reduction: equivariance

Equivariance ansatz: (r.0) polar coordinates
o(t,x) = e™u(t,r) (m e 7Z: equivariance index)
The main equation: (equation depends on m)
. 1 Ao\ 2
i0ru + (8” + 78,)u - (m) u—Au+gluPu=0
r r

with connection components

Ag:—%/ w2rdr’ and At:—/ (m+ AP
0 r

@ Non-local nonlinearity (both from Ay and A;)
As(0) =0 but Ay(c0) = —1 [ |ul*rdr< 0.

o No derivative nonlinearity (L-critical well-posedness via Strichartz estimates)
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Self-dual Chern—Simons—Schrddinger equation

Symmetries and conservation laws

CSS has symmetries and conservation laws analogous to the L?-critical NLS:

@ Conservation of Energy and Charge:
_[1 2 1/m+AN2 o g 4 _ (1 2
Elul = [ Gl + 5 (" E) ol - Bt Ml = [ 1o
o [2-scaling symmetry:
1 (i L)
PRI

o Pseudoconformal symmetry: (reverts time t — — 1, scale r + 1)

@ Virial identities also hold.
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Self-duality and static solution @

From now on, g = 1 (self-dual case).

o Self-dual expression of energy: 1 called Bogomol'nyi operator
B2 [10.f, D (o - MHAL),

@ Static solution (i.e., time-independent solution) can be found by solving the
Bogomol’nyi equation D@ = 0:

Qr) = VB(m + 1)1

ey for each m > 0.

(unique up to phase rotation/L>-scaling)

@ The self-dual structure still exists without symmetry, and the Bogomol'nyi equation
is connected to Liouville's equation. (Jackiw—Pi '90)
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Brief comparison with NLS

(CSS) (NLS)

Efu] = 1 [|Dyul*> 0 E[] = 3 [IVyP = 3 [1vl*
u(t,r) = Q(r) P(t,x) = eitR(r)

DeQ =0 —AR+R—|R*R=0
VE[Q] =0 VE[R]+VMI[R] =0

—(m+2)

Polynomial decay r Exponential decay

Linearized operators for (CSS) and (NLS) are completely different. Generalized null space
relations:

(NLS)

(CSS) iLnispnis = ir°R,
iLop=iQ iLei%@=AQ, iLnsis R = AR,
iLgiQ =0 iLoAQ=0. iLnLsAR = —2iR,

iLnLsiR = 0
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Self-dual Chern—Simons—Schrddinger equation

Dynamics below the threshold

The ground state Q plays a pivotal role in large data dynamics.

o Subthreshold dynamics
If m>0, M[u] < M[Q], and L*-data (Liu-Smith '16),
= GWP /Scattering (c.f. Kenig—Merle '06 and Killip—-Tao—Visan '09)

@ Threshold dynamics
If M[u] = M[Q] and H*-data (Liu—Li '20), then u is either (up to symmetries)

(i) global static solution Q(r),
2

. .. . 1 i
(ii) explicit blow-up solution S(t,r) = mQ(é)e il or
(iii) global-in-time and scatters.

(c.f. Merle '93, Killip—Li-Visan-Zhang '09)

The story so far is very similar to the case of NLS.
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Main result I: Soliton resolution

Soliton resolution

o General large data dynamics? We would like to believe the soliton resolution
conjecture: (under generic assumptions on data)

Asymptotically in time, any solutions decompose into

the sum of modulated solitons and a radiation.

(Modulated means L-scaled and phase-rotated)

@ Soliton resolution has been known for some completely integrable models.

@ For non-integrable models? Very recently, soliton resolution is proved for radial
critical NLW and equivariant wave maps (Duyckaerts, Kenig, Merle, Martel, Collot,
and Jendrej, Lawrie).
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Main result I: Soliton resolution

(CSS) is in fact very speciall Soliton resolution for (CSS) can be proved (in a weighted
Sobolev class):

o Consequence of the self-duality and non-local nonlinearities,

@ The dynamics is very rigid: no multi-soliton.

Let us recall and fix the notation.
e m € 7 is the equivariance index, ¢(t, r) = e™ u(t, r), (CSS) depends on m.

E[u], M[u]: energy and charge (or, L>-mass) of u,

o C: pseudoconformal transform, reverts time t — —%, scales r — ﬁ
Q = Q(r): static solution, not exist when m < 0, spatial decay r~{™*2 when m > 0.
5(t) = [CQ](t): the pseudoconformal transform of Q, finite-time blow-up solution.

HY' = H* N r~*[2: weighted Sobolev space

HY, HY': spaces restricted to m-equivariant functions.

2 . . L .
A =5, + %8, — 7z Laplacian acting on m-equivariant functions.
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Main result I: Soliton resolution

Soliton resolution: H* finite-time blow-up

Theorem (K.~Kwon-Oh, H" finite-time blow-up solutions)

(Case m < 0) there is no finite-time blow-up H"-solution.

(Case m > 0) If u is a Hy-solution to (CSS) that blows up in finite time T, then there
exist scale parameter \(t), phase parameter ~(t), and an asymptotic profile z*(r) € L?
satisfying

e (®) r . s
u(t,r)— WQ(E) — z7(r) in L

ast— T and

(further regularity) z* e HY,

VEMT=) if m=0
(bound for the blow-up rate) A(t) Sy log(T—1)| 2 ’

VEU(T —t) ifm>1.
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Main result I: Soliton resolution

Soliton resolution: global H! solutions

Theorem (K.—Kwon-Oh, H™! global solutions)

(Case m < 0) Any H%'-solution scatters.

(Case m > 0) If u is a forward-in-time global Hy'-solution to (CSS), then either u
scatters forward-in-time or there exist scale parameter A\(t), phase parameter ~(t), and a
scattering profile u*(r) € L? satisfying

en r itA(=m=2) .2
U(t7r)_WQ(W)_e u —0 in L
as t — 400 and
(further regularity) u* e HY,
Y E[C;’] ifm=20
(bound for the blow-up rate) A(t) S § gt 2 ’

VE[Cu] ifm>1.
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Main result I: Soliton resolution

Comments on the result

@ (Dynamics of m < 0) We show that the equation is defocusing in the sense that
2
Efu] ~mp [[ulls -

In particular, there is no (H') solitons when m < 0.

o (Nonexistence of multi-solitons) At most one soliton can appear! Indeed, as a
consequence of the self-duality and non-locality, we observe a defocusing nature,
i.e., the strict positivity of the energy, in the exterior of the soliton profile.

These features are very special, and are not expected for 2D cubic NLS.

o (Regularity assumptions on data) Using the pseudoconformal transform, the global
case can always be reduced to the finite-time blow-up case, if one assumes H for
the global case.
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Main result I: Soliton resolution

o (Bounds for scaling A\(t)) When m > 1, the bounds (A(t) < T — t or A(t) S 1) are
saturated by S(t) and Q. An interesting open question is the construction or the
non-existence of the blow-up rates not saturating these bounds.

When m = 0, the improved bounds (A(t) < |log(T — t)| %(T —t)or
At) < |logt|"2) do not include S(t) and Q. This is not a contradiction because
S(t) ¢ H* and @ ¢ H"' when m = 0. Moreover, there exist finite-time blow-up
solutions with the scenarios (K.-Kwon—Oh)

T—t (T —1¢)P

MO Tiogr—op 2™ MO gm0

forall p > 1.
o (Comparison with mass-critical NLS) For the mass-critical NLS, such a result is
available in the regime
M[R] < M[y] < M[R] + a7, 0<a” K1,

by the works of Merle and Raphaél. For CSS, we could prove a similar result without
mass restriction on solutions.

There is no log-log blow-up for (CSS), though such log-log blow-up is expected
for the focusing non-self-dual CSS (g > 1).
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Main result 11: Blow-up dynamics and rotational instability

Blow-up dynamics

From now on, we would like to study refined descriptions of the dynamics. We focus on
the finite-time blow-up for finite energy (i.e., H*) solutions:

i(t) r
u(t,r) — (;(T)Q(m) —z*(r) as t—0.
Recall:

o Necessarily m >0

z* € H' (z*(r) called asymptotic profile)

A(t) < {"OE(T— t)"3(T 1) ifm=0,

T—t if m>1.

Q(r): static solution with spatial decay r—(m+?

S(t,r) =1[CQI(t,r) =

/’2
el Q( |t|) "3 has finite energy if and only if m > 1.
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Main result 11: Blow-up dynamics and rotational instability

Pseudoconformal blow-up solutions, m > 1
When m > 1, there is an explicit finite-time blow-up solution S(t), which satisfies

1 r . 2
S(t,r)— mQ(m) —0 inl® ast—0.

We study the pseudoconformal blow-up solutions

et r . . _
u(t,r)—WQ(m)—)z(r) inl® ast— T,
where A(t) &~ C(u) - (T —t) (i.e., linear), and the dynamics nearby. First,
Theorem (K.—Kwon)

Let m > 1. Given the asymptotic profile z*(r) that is small, smooth, and degenerate at
the origin (i.e., |z(r)| < r), there exists a solution u(t,r) such that

u(t,r) — iQ(

It

r

m)—>z*(r) as t—0.

Remark:

@ (CSS)-analogue of Bourgain-Wang solutions in (NLS).
_ Long-term dynamics for CSS 17 /32



Main result 11: Blow-up dynamics and rotational instability

Instability of pseudoconformal blow-up

Moreover, this pseudoconformal blow-up is unstable:

Theorem (K.—Kwon)

With the same hypothesis as before, there exists a continuous one-parameter family of
solutions {u™}, >0 such that

iv(M(t)
@D(p ) & r .
u'(t,r) = (D) Q(,\(n)(t)) + z"(r) for t near 0,

where X" and ~ are given in the next slide, and {u™}, ¢ satisfies

(©

o u® js the pseudoconformal blow-up solution in the previous slide,

o Ifn#0, ul™ scatters both forwards and backwards in time.

Remark: The theorem is only proved for > 0, but it should also hold for n < 0.
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Main result 11: Blow-up dynamics and rotational instability

Rotational instability

The most interesting part is its instability mechanism: rotational instability!

() = (8 + )3,

() — -1ty 7
A(t) = san(m)(m + D{tan ™ (1) = T},
_ L k)
o—o .
1 el (m+0)x 50
1,1
1,0 /
| s,
i w=0 2
P
t
—(Mﬂ)n,__

Figure: Graphs of ﬁ and ~(t)
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Main result 11: Blow-up dynamics and rotational instability

Rotational instability

which is completely different from the NLS case:

Theorem (Merle-Raphaél-Szeftel '13)

There exists a continuous one-parameter family of radial solutions {u™} to (NLS)
satisfying

(@)

(n) ~
u(t,r) ~ \o0(2) R

r *
()\(T(t)) + z*(r) for t near 0,

and,
o u® = u is the Bourgain-Wang (or, pseudoconformal blow-up) solution,
e Forn >0, u' scatters both forwards and backwards in time,

o Forn <0, ul™ scatters backwards in time but blows up forwards in time under the
log-log regime.

Rotational instability is not a unique feature of (CSS)!

o formally observed in other critical geometric equations
(e.g. van den Berg-Williams '13, Merle-Raphaél-Rodnianski '13.)
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Main result 11: Blow-up dynamics and rotational instability

Codimension-one property of pseudoconformal blow-up, m > 1

We complement our instability result by showing that, the pseudoconformal blow-up can
occur from a codimension-one set of initial data:

Theorem (K.—Kwon)

Let m > 1. There is a codimension one set of (smooth) initial data uo(r) such that the
forward-in-time evolution u(t, r) is a pseudoconformal blow-up solution.

Rotational instability conjecture: There is a codimension-1 manifold M of initial data
such that

@ up € M — pseudoconformal blow-up

@ up ¢ M but near to M — global, scattering, exhibits rotational instability.

Linear conjugation identity: We found a simple but remarkable algebraic identity that
formally connects (CSS) to (WM) or (SM) at the linear level. This allows us to find a
hidden repulsivity property in (CSS).
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Main result 11: Blow-up dynamics and rotational instability

Smooth finite-energy blow-up solutions, m =0

The radial case (m = 0) turns out to be the most delicate.

- m = 0 most physically relevant, @ being the ground state without symmetry,

- S(t) ¢ H* and the pseudoconformal blow-up is ruled out for finite energy solutions.
Thus it is natural to ask if finite energy finite-time blow-up solutions exist.

Theorem (K.—Kwon—-Oh)

Let m = 0. There is a codimension one set of smooth finite energy radial initial data
uo(r) such that the forward-in-time evolution u(t, r) blows up in finite time (say T < o0)
and
e’ r w2 X T—t
tr)— ——=Q(—=) — L M) =N ————
u(t,r) /\(t)Q</\(t)) Zin L MO~ AN T

ast— T, for some~y* € R, \* € Ry, and z* € H.

Remarks:
@ One can take up € C° and |juo — Q|2 < 1.

@ Infinite-time blow-up A(t) ~ (log t)? by the pseudoconformal transform.
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Main result 11: Blow-up dynamics and rotational instability

Comments on the result

Finite energy solution

o S5(t) has infinite energy
= The (conjugated) linearized operator has a zero resonance
= a logarithmic correction to the blow-up rate.
(c.f. Raphaél-Rodnianski '12, Merle-Raphaél-Rodnianski '13)

@ For (NLS), the exact self-similar profile barely fails to lie in L2
= log-log correction to the self-similar rate (Merle-Raphaél)

Comparison with WM or SM
e Q for (CSS) is similar to the harmonic maps in (WM) or (SM).
o Exactly the same blow-up rate as 1-equivariant (SM) of [MRR13].

@ Linear conjugation identity of [2].
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Main result 11: Blow-up dynamics and rotational instability

Continuum of blow-up rates, m =0

Finally, when m = 0, there is a continuum of possible blow-up rates.

Theorem (K.—Kwon—Oh)
Let m=0. For q € C\ {0} and Re(v) > 0, set

Z°(r) = qrx(r).

Then, there exists a finite energy blow-up solution u(t, r) such that

erav(t) , o, i
u(t,r)—m ()\qu(t))—)z inl®ast—0
with
Agu(t)e @ = ¢, . g |t|z+1 ’ in particular g (t) ~quw &.
’ [log¢]] : Tog Tl

Remarks:
@ Optimal range of v.
@ When Im(v) # 0, u exhibits infinite amount of phase rotation.
@ Infinite-time blow-up solution by pseudoconformal transform.
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Main result 11: Blow-up dynamics and rotational instability

Comments on the result

Regularity of z* and blow-up rate:
@ Strong interaction between z* and Q» .

@ We believe 1-1 correspondence between the blow-up rate and z*. (This is true for
corotational WM: Jendrej—Lawrie—Rodriguez '19, whereas it is false for the
pseudoconformal blow-up m > 1)

An interesting part in the proof: construction of the radiation z(t, r).

Evolve the initial data z(0, r) = gr”x(r) under some NLS (under id, + A=), and
justify the leading asymptotics z(t, r) ~ qcu\t|Vszr2 in the self-similar region r < |t|%.
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Main result 11: Blow-up dynamics and rotational instability

Summary of results on blow-up dynamics

In the case of higher equivariance indices m > 1:

o [1] Constructed a curve of solutions exhibiting the rotational instability of
pseudoconformal blow-up solutions.

@ [2] Pseudoconformal blow-up solutions can arise from a codimension one set of
initial data.

@ The results [1,2] motivated the rotational instability conjecture.

In the radial case m = 0:

@ [3] Constructed smooth finite-energy finite-time blow-up solutions, whose blow-up
rate differs from the pseudoconformal one by a power of logarithm. These solutions
arise from a codimension one set of initial data. Exhibiting the rotational instability
for this case remains open.

@ [4] Continuum of blow-up rates.
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Main result 11: Blow-up dynamics and rotational instability

Comments on the proof

Method of the proof: modulation analysis
@ [1,4] Backward construction (c.f. Merle '90, Bourgain—Wang '97, Raphaél-Szeftel
'11, Merle-Raphaél-Szeftel '13, Jendrej—Lawrie-Rodriguez '19)
@ [2,3] Forward construction with repulsivity (c.f. Rodnianski-Sterbenz '10,
Raphaél-Rodnianski '12, Merle-Raphaél-Rodnianski "13)
Difficulties:
o Different instability mechanism and evolution equations for b and 7.
@ Nonlocal nonlinearity:
1. Construction of the blow-up profile P,
2. Extra phase corrections (due to A;),
3. Modified evolution equation for z*,
4. Analysis of the linearized operator (from 0; + iLq to d¢ + iHg)
@ These difficulties become the strongest in the radial case m = 0.
1. Refined modulation equations,
2. Weaker repulsivity.
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Main result 11: Blow-up dynamics and rotational instability

Thank you very much!
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Strategy of the proof

The proof is in fact very simple!l The key ingredient is the nonlinear coercivity of energy
as a consequence of self-duality and non-locality.
@ Some standard reductions:
1. HY!-assumption and pseudoconformal transform
= suffices to consider the finite-time blow-up case for finite energy solutions.
2. Finite-time blow-up and blow-up criterion
= |Ju(t)llg — +oo but E[u(t)] is conserved.

- For defocusing NLS, E[] 2 |[V4(t)||?2 so this cannot happen. Thus there is no
non-scattering solutions.
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Strategy of the proof

Now, the nonlinear coercivity of energy:
@ For m < 0 (CSS), we show that (CSS) is defocusing:

Elu] ~u N1l
e For m > 0 (CSS), we show the nonlinear coercivity of energy:

Elu] ~up 1€ (017

iv(t) .
where u(t) = e)\(—t)Q(m) + €'(t) under suitable orthogonality conditions on ¢
and under the small energy regime:
o< EMOL
Tu(®)2,

This is NOT a linear coercivity, because ¢! can have very large [?-norm.

Combining the above with the arguments of [Merle-Raphaél], soliton resolution follows.
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Nonlinear coercivity of energy, m < 0
When m < 0, our goal is to show
ELu] ~aa 0l

To show this, we first use the self-duality:

£l = 5 [ D = L [ |(o - T2

We recall that Ag[u] = —3 [7 |u|*r'dr’ is always negative with the bound:
0< —Agfu] < "Z [1]

Note that m is also negative. Therefore, we can hope that the linear operator D, enjoys
some Hardy's inequality, and this is in fact true:

(o= AN > cOm My, v e

Point is that C depends only on M[u], which is a conserved quantity. This shows the
coercivity E[u] Zmp HuHH1
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Nonlinear coercivity of energy, m > 0

When m > 0, our goal is equivalent to showing that
E[Q+¢ > C(m M[u])llellfy,  Vee Hp

under (i) suitable orthogonality conditions on € and (ii) [[¢[|;;; < 1. By self-duality,

EQ+6 == /\Do+€o+e /( (o - A DY @ o

o Interior r < R: (where Do (Q + ¢) = Lge + O(¢?))

R
integralw/ |Loe|*rdr.
0

We can apply the linear coercivity by spending orthogonality conditions.
o Exterior r > R: we use the non-locality As[Q](r) = —(2m+ 2) as r — +o0 to write

m+ Ag[Q + €] = m+ Ap[Q] + Aole] = —(m + 2) + Agle].

integral ~ /Roo ‘(8, — M)e :

r

and obtain
rdr

Now —(m + 2) is negative, prove nonlinear Hardy's inequality as in the m < 0 case!
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