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Self-dual Chern–Simons–Schrödinger equation

Chern–Simons–Schrödinger equation

The Chern–Simons–Schrödinger equation is

introduced by the physicists Jackiw and Pi ’90, as a nonrelativistic Chern–Simons
gauge field theory, which admits the self-dual structure when the coupling strength
is critical.

U(1) gauge-covariant 2D cubic NLS (i∂tψ + ∆ψ + |ψ|2ψ = 0), so it is similar to 2D
cubic NLS. (symmetries/conservation laws, ...)

The Chern–Simons action has been employed, for example, in condensed matter
physics to describe some planar physics, e.g., quantum Hall effect and high
temperature superconductivity.

In the self-dual case, under equivariance symmetry, CSS turns out to be an interesting
mathematical model:

Strong rigidity in asymptotic behavior of solutions:
Soliton resolution, non-existence of bubble trees,

Blow-up dynamics and rotational instability:
Completely different near-soliton dynamics compared to that of NLS!
Rather similar to wave maps or Schrödinger maps from R1+2 into S2.
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Self-dual Chern–Simons–Schrödinger equation

Chern–Simons–Schrödinger equation

Unknowns:
- matter field φ : R1+2 → C
- gauge fields Aα : R1+2 → R, α ∈ {t, 1, 2}.
Let Dα := ∂α + iAα and Fαβ := ∂αAβ − ∂βAα.
Equation: 

iDtφ+ DjDjφ+ g |φ|2φ = 0,
Ft1 = −Im(φD2φ),

Ft2 = Im(φD1φ),

F12 = − 1
2 |φ|

2,

Self-dual case: g = 1.

∃L2-scaling symmetry, mass/energy conservation, pseudoconformal symmetry, virial
identities, ...
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Self-dual Chern–Simons–Schrödinger equation

Coulomb gauge

Gauge invariance:
(φ,A) → (e iχφ,A− dχ).

We will fix the Coulomb gauge condition:

∂1A1 + ∂2A2 = 0

Aα is determined by φ, i.e., Aα = Aα[φ]

Hamiltonian structure: CSS reduces to a single equation of φ

∂tφ = −i∇E [φ], E [φ] :=
1
2

∫
|Dxφ|2 −

g

4

∫
|φ|4.

LWP: H1 in Coulomb gauge (Lim ’18), small data H0+ in the heat guage
(Liu-Smith-Tataru ’14). L2-critical well-posedness is still open.

Other known results: existence of solitons and explicit blow-up solutions, formal
derivation of log-log blow-up for g > 1, small data decay and scattering, etc.
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Self-dual Chern–Simons–Schrödinger equation

Symmetry reduction: equivariance

Equivariance ansatz: (r , θ) polar coordinates

φ(t, x) = e imθu(t, r) (m ∈ Z: equivariance index)

The main equation: (equation depends on m)

i∂tu +
(
∂rr +

1
r
∂r
)
u −

(m + Aθ
r

)2
u − Atu + g |u|2u = 0

with connection components

Aθ = −1
2

∫ r

0
|u|2r ′dr ′ and At = −

∫ ∞
r

(m + Aθ)|u|2 dr
′

r ′
.

Non-local nonlinearity (both from Aθ and At)
Aθ(0) = 0 but Aθ(∞) = − 1

2

∫∞
0 |u|

2rdr< 0.

No derivative nonlinearity (L2-critical well-posedness via Strichartz estimates)

Long-term dynamics for CSS 5 / 32



Self-dual Chern–Simons–Schrödinger equation

Symmetries and conservation laws

CSS has symmetries and conservation laws analogous to the L2-critical NLS:

Conservation of Energy and Charge:

E [u] =

∫
1
2
|∂ru|2 +

1
2

(m + Aθ
r

)2
|u|2 − g

4
|u|4 M[u] =

∫
1
2
|u|2

L2-scaling symmetry:
1
λ
u
( t

λ2 ,
r

λ

)
Pseudoconformal symmetry: (reverts time t 7→ − 1

t
, scale r 7→ r

t
)

1
t
e i

t
4 |

r
t
|2u
(
− 1

t
,
r

t

)
Virial identities also hold.
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Self-dual Chern–Simons–Schrödinger equation

Self-duality and static solution Q

From now on, g = 1 (self-dual case).
Self-dual expression of energy: ↓ called Bogomol’nyi operator

E [u] =
1
2

∫
|Duu|2, Duu :=

(
∂r −

m + Aθ[u]

r

)
u.

Static solution (i.e., time-independent solution) can be found by solving the
Bogomol’nyi equation DQQ = 0:

Q(r) =
√
8(m + 1)

rm

1 + r2(m+1)
for each m ≥ 0.

(unique up to phase rotation/L2-scaling)

The self-dual structure still exists without symmetry, and the Bogomol’nyi equation
is connected to Liouville’s equation. (Jackiw–Pi ’90)
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Self-dual Chern–Simons–Schrödinger equation

Brief comparison with NLS

(CSS) (NLS)

E [u] = 1
2

∫
|Duu|2≥ 0 E [ψ] = 1

2

∫
|∇ψ|2 − 1

4

∫
|ψ|4

u(t, r) = Q(r) ψ(t, x) = e itR(r)

DQQ = 0 −∆R+R − |R|2R = 0

∇E [Q] = 0 ∇E [R]+∇M[R] = 0

Polynomial decay r−(m+2) Exponential decay

Linearized operators for (CSS) and (NLS) are completely different. Generalized null space
relations:

(NLS)

(CSS) iLNLSρNLS = ir2R,

iLQρ = iQ iLQ i
r2

4 Q = ΛQ, iLNLSi
r2

4 R = ΛR,

iLQ iQ = 0 iLQΛQ = 0. iLNLSΛR = −2iR,
iLNLSiR = 0
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Self-dual Chern–Simons–Schrödinger equation

Dynamics below the threshold

The ground state Q plays a pivotal role in large data dynamics.

Subthreshold dynamics
If m ≥ 0, M[u] < M[Q], and L2-data (Liu–Smith ’16),
⇒ GWP/Scattering (c.f. Kenig–Merle ’06 and Killip–Tao–Visan ’09)

Threshold dynamics
If M[u] = M[Q] and H1-data (Liu–Li ’20), then u is either (up to symmetries)

(i) global static solution Q(r),

(ii) explicit blow-up solution S(t, r) =
1
|t|Q

( r

|t|

)
e
−i r2

4|t| , or

(iii) global-in-time and scatters.

(c.f. Merle ’93, Killip–Li–Visan–Zhang ’09)

The story so far is very similar to the case of NLS.
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Main result I: Soliton resolution

Soliton resolution

General large data dynamics? We would like to believe the soliton resolution
conjecture: (under generic assumptions on data)

Asymptotically in time, any solutions decompose into

the sum of modulated solitons and a radiation.

(Modulated means L2-scaled and phase-rotated)

Soliton resolution has been known for some completely integrable models.

For non-integrable models? Very recently, soliton resolution is proved for radial
critical NLW and equivariant wave maps (Duyckaerts, Kenig, Merle, Martel, Collot,
and Jendrej, Lawrie).
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Main result I: Soliton resolution

(CSS) is in fact very special! Soliton resolution for (CSS) can be proved (in a weighted
Sobolev class):

Consequence of the self-duality and non-local nonlinearities,
The dynamics is very rigid: no multi-soliton.

Let us recall and fix the notation.

m ∈ Z is the equivariance index, φ(t, r) = e imθu(t, r), (CSS) depends on m.

E [u], M[u]: energy and charge (or, L2-mass) of u,

C: pseudoconformal transform, reverts time t 7→ − 1
t
, scales r 7→ r

|t| .

Q = Q(r): static solution, not exist when m < 0, spatial decay r−(m+2) when m ≥ 0.

S(t) = [CQ](t): the pseudoconformal transform of Q, finite-time blow-up solution.

H1,1 = H1 ∩ r−1L2: weighted Sobolev space

H1
m, H1,1

m : spaces restricted to m-equivariant functions.

∆(m) = ∂rr + 1
r
∂r − m2

r2 : Laplacian acting on m-equivariant functions.
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Main result I: Soliton resolution

Soliton resolution: H1 finite-time blow-up

Theorem (K.–Kwon–Oh, H1 finite-time blow-up solutions)

(Case m < 0) there is no finite-time blow-up H1-solution.
(Case m ≥ 0) If u is a H1

m-solution to (CSS) that blows up in finite time T , then there
exist scale parameter λ(t), phase parameter γ(t), and an asymptotic profile z∗(r) ∈ L2

satisfying

u(t, r)− e iγ(t)

λ(t)
Q
( r

λ(t)

)
→ z∗(r) in L2

as t → T and

(further regularity) z∗ ∈ H1,

(bound for the blow-up rate) λ(t) .M[u]


√

E [u](T−t)

| log(T−t)|
1
2

if m = 0,√
E [u](T − t) if m ≥ 1.
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Main result I: Soliton resolution

Soliton resolution: global H1,1 solutions

Theorem (K.–Kwon–Oh, H1,1 global solutions)

(Case m < 0) Any H1,1
m -solution scatters.

(Case m ≥ 0) If u is a forward-in-time global H1,1
m -solution to (CSS), then either u

scatters forward-in-time or there exist scale parameter λ(t), phase parameter γ(t), and a
scattering profile u∗(r) ∈ L2 satisfying

u(t, r)− e iγ(t)

λ(t)
Q
( r

λ(t)

)
− e it∆(−m−2)

u∗ → 0 in L2

as t → +∞ and

(further regularity) u∗ ∈ H1,1,

(bound for the blow-up rate) λ(t) .M[u]


√

E [Cu]

| log t|
1
2

if m = 0,√
E [Cu] if m ≥ 1.
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Main result I: Soliton resolution

Comments on the result

(Dynamics of m < 0) We show that the equation is defocusing in the sense that

E [u] ∼M[u] ‖u‖2Ḣ1
m
.

In particular, there is no (H1) solitons when m < 0.

(Nonexistence of multi-solitons) At most one soliton can appear! Indeed, as a
consequence of the self-duality and non-locality, we observe a defocusing nature,
i.e., the strict positivity of the energy, in the exterior of the soliton profile.
These features are very special, and are not expected for 2D cubic NLS.

(Regularity assumptions on data) Using the pseudoconformal transform, the global
case can always be reduced to the finite-time blow-up case, if one assumes H1,1 for
the global case.
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Main result I: Soliton resolution

(Bounds for scaling λ(t)) When m ≥ 1, the bounds (λ(t) . T − t or λ(t) . 1) are
saturated by S(t) and Q. An interesting open question is the construction or the
non-existence of the blow-up rates not saturating these bounds.
When m = 0, the improved bounds (λ(t) . | log(T − t)|−

1
2 (T − t) or

λ(t) . | log t|−
1
2 ) do not include S(t) and Q. This is not a contradiction because

S(t) /∈ H1 and Q /∈ H1,1 when m = 0. Moreover, there exist finite-time blow-up
solutions with the scenarios (K.–Kwon–Oh)

λ(t) ∼ T − t

| log(T − t)|2 and λ(t) ∼ (T − t)p

| log(T − t)| for all p > 1.

(Comparison with mass-critical NLS) For the mass-critical NLS, such a result is
available in the regime

M[R] < M[ψ] < M[R] + α∗, 0 < α∗ � 1,

by the works of Merle and Raphaël. For CSS, we could prove a similar result without
mass restriction on solutions.
There is no log-log blow-up for (CSS), though such log-log blow-up is expected

for the focusing non-self-dual CSS (g > 1).
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Main result II: Blow-up dynamics and rotational instability

Blow-up dynamics

From now on, we would like to study refined descriptions of the dynamics. We focus on
the finite-time blow-up for finite energy (i.e., H1) solutions:

u(t, r)− e iγ(t)

λ(t)
Q
( r

λ(t)

)
→ z∗(r) as t → 0.

Recall:

Necessarily m ≥ 0

z∗ ∈ H1 (z∗(r) called asymptotic profile)

λ(t) .

{
| log(T − t)|−

1
2 (T − t) if m = 0,

T − t if m ≥ 1.

Q(r): static solution with spatial decay r−(m+2)

S(t, r) = [CQ](t, r) =
1
|t|Q(

r

|t| )e
−i r2

4|t| has finite energy if and only if m ≥ 1.
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Main result II: Blow-up dynamics and rotational instability

Pseudoconformal blow-up solutions, m ≥ 1

When m ≥ 1, there is an explicit finite-time blow-up solution S(t), which satisfies

S(t, r)− 1
|t|Q

( r

|t|

)
→ 0 in L2 as t → 0.

We study the pseudoconformal blow-up solutions

u(t, r)− e iγ(t)

λ(t)
Q
( r

λ(t)

)
→ z∗(r) in L2 as t → T−,

where λ(t) ≈ C(u) · (T − t) (i.e., linear), and the dynamics nearby. First,

Theorem (K.–Kwon)

Let m ≥ 1. Given the asymptotic profile z∗(r) that is small, smooth, and degenerate at
the origin (i.e., |z∗(r)| . rK ), there exists a solution u(t, r) such that

u(t, r)− 1
|t|Q

( r

|t|

)
→ z∗(r) as t → 0.

Remark:
(CSS)-analogue of Bourgain–Wang solutions in (NLS).
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Main result II: Blow-up dynamics and rotational instability

Instability of pseudoconformal blow-up

Moreover, this pseudoconformal blow-up is unstable:

Theorem (K.–Kwon)

With the same hypothesis as before, there exists a continuous one-parameter family of
solutions {u(η)}η≥0 such that

u(η)(t, r) ≈ e iγ
(η)(t)

λ(η)(t)
Q
( r

λ(η)(t)

)
+ z∗(r) for t near 0,

where λ(η) and γ(η) are given in the next slide, and {u(η)}η≥0 satisfies

u(0) is the pseudoconformal blow-up solution in the previous slide,

If η 6= 0, u(η) scatters both forwards and backwards in time.

Remark: The theorem is only proved for η ≥ 0, but it should also hold for η ≤ 0.
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Main result II: Blow-up dynamics and rotational instability

Rotational instability

The most interesting part is its instability mechanism: rotational instability!

λ(η)(t) = (t2 + η2)
1
2 ,

γ(η)(t) = sgn(η)(m + 1)
{

tan−1
( t

|η|

)
− π

2

}
,

Figure: Graphs of 1
λ(t)

and γ(t)
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Main result II: Blow-up dynamics and rotational instability

Rotational instability

which is completely different from the NLS case:

Theorem (Merle–Raphaël–Szeftel ’13)

There exists a continuous one-parameter family of radial solutions {u(η)} to (NLS)
satisfying

u(η)(t, r) ≈ e iγ
(η)(t)

λ(η)(t)
R
( r

λ(η)(t)

)
+ z∗(r) for t near 0,

and,

u(0) = u is the Bourgain–Wang (or, pseudoconformal blow-up) solution,

For η > 0, u(η) scatters both forwards and backwards in time,

For η < 0, u(η) scatters backwards in time but blows up forwards in time under the
log-log regime.

Rotational instability is not a unique feature of (CSS)!

formally observed in other critical geometric equations
(e.g. van den Berg–Williams ’13, Merle–Raphaël–Rodnianski ’13.)
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Main result II: Blow-up dynamics and rotational instability

Codimension-one property of pseudoconformal blow-up, m ≥ 1

We complement our instability result by showing that, the pseudoconformal blow-up can
occur from a codimension-one set of initial data:

Theorem (K.–Kwon)

Let m ≥ 1. There is a codimension one set of (smooth) initial data u0(r) such that the
forward-in-time evolution u(t, r) is a pseudoconformal blow-up solution.

Rotational instability conjecture: There is a codimension-1 manifoldM of initial data
such that

u0 ∈M → pseudoconformal blow-up

u0 /∈M but near toM → global, scattering, exhibits rotational instability.

Linear conjugation identity: We found a simple but remarkable algebraic identity that
formally connects (CSS) to (WM) or (SM) at the linear level. This allows us to find a
hidden repulsivity property in (CSS).
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Main result II: Blow-up dynamics and rotational instability

Smooth finite-energy blow-up solutions, m = 0

The radial case (m = 0) turns out to be the most delicate.
- m = 0 most physically relevant, Q being the ground state without symmetry,
- S(t) /∈ H1 and the pseudoconformal blow-up is ruled out for finite energy solutions.
Thus it is natural to ask if finite energy finite-time blow-up solutions exist.

Theorem (K.–Kwon–Oh)

Let m = 0. There is a codimension one set of smooth finite energy radial initial data
u0(r) such that the forward-in-time evolution u(t, r) blows up in finite time (say T <∞)
and

u(t, r)− e iγ
∗

λ(t)
Q
( r

λ(t)

)
→ z∗ in L2, λ(t) ≈ λ∗ T − t

| log(T − t)|2

as t → T , for some γ∗ ∈ R, λ∗ ∈ R+, and z∗ ∈ H1.

Remarks:

One can take u0 ∈ C∞c and ‖u0 − Q‖L2 � 1.

Infinite-time blow-up λ(t) ∼ (log t)2 by the pseudoconformal transform.
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Main result II: Blow-up dynamics and rotational instability

Comments on the result

Finite energy solution
S(t) has infinite energy
⇒ The (conjugated) linearized operator has a zero resonance
⇒ a logarithmic correction to the blow-up rate.

(c.f. Raphaël–Rodnianski ’12, Merle–Raphaël–Rodnianski ’13)
For (NLS), the exact self-similar profile barely fails to lie in L2

⇒ log-log correction to the self-similar rate (Merle-Raphaël)
Comparison with WM or SM

Q for (CSS) is similar to the harmonic maps in (WM) or (SM).

Exactly the same blow-up rate as 1-equivariant (SM) of [MRR13].
Linear conjugation identity of [2].
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Main result II: Blow-up dynamics and rotational instability

Continuum of blow-up rates, m = 0

Finally, when m = 0, there is a continuum of possible blow-up rates.

Theorem (K.–Kwon–Oh)

Let m = 0. For q ∈ C \ {0} and Re(ν) > 0, set

z∗(r) = qrνχ(r).

Then, there exists a finite energy blow-up solution u(t, r) such that

u(t, r)− e iγq,ν (t)

λq,ν(t)
Q
( r

λq,ν(t)

)
→ z∗ in L2 as t → 0−

with

λq,ν(t)e iγq,ν (t) = cν · q
|t|

ν
2 +1

| log |t|| , in particular λq,ν(t) ∼q,ν
|t|

Re(ν)
2 +1

| log |t|| .

Remarks:
Optimal range of ν.
When Im(ν) 6= 0, u exhibits infinite amount of phase rotation.
Infinite-time blow-up solution by pseudoconformal transform.
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Main result II: Blow-up dynamics and rotational instability

Comments on the result

Regularity of z∗ and blow-up rate:
Strong interaction between z∗ and Qλ,γ .

We believe 1-1 correspondence between the blow-up rate and z∗. (This is true for
corotational WM: Jendrej–Lawrie–Rodriguez ’19, whereas it is false for the
pseudoconformal blow-up m ≥ 1)

An interesting part in the proof: construction of the radiation z(t, r).
Evolve the initial data z(0, r) = qrνχ(r) under some NLS (under i∂t + ∆(−2)), and
justify the leading asymptotics z(t, r) ≈ qcν |t|

ν−2
2 r2 in the self-similar region r . |t|

1
2 .
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Main result II: Blow-up dynamics and rotational instability

Summary of results on blow-up dynamics

In the case of higher equivariance indices m ≥ 1:

[1] Constructed a curve of solutions exhibiting the rotational instability of
pseudoconformal blow-up solutions.

[2] Pseudoconformal blow-up solutions can arise from a codimension one set of
initial data.

The results [1,2] motivated the rotational instability conjecture.

In the radial case m = 0:

[3] Constructed smooth finite-energy finite-time blow-up solutions, whose blow-up
rate differs from the pseudoconformal one by a power of logarithm. These solutions
arise from a codimension one set of initial data. Exhibiting the rotational instability
for this case remains open.

[4] Continuum of blow-up rates.
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Main result II: Blow-up dynamics and rotational instability

Comments on the proof

Method of the proof: modulation analysis
[1,4] Backward construction (c.f. Merle ’90, Bourgain–Wang ’97, Raphaël–Szeftel
’11, Merle–Raphaël–Szeftel ’13, Jendrej–Lawrie–Rodriguez ’19)

[2,3] Forward construction with repulsivity (c.f. Rodnianski–Sterbenz ’10,
Raphaël–Rodnianski ’12, Merle–Raphaël–Rodnianski ’13)

Difficulties:

Different instability mechanism and evolution equations for b and η.

Nonlocal nonlinearity:
1. Construction of the blow-up profile P,
2. Extra phase corrections (due to At),
3. Modified evolution equation for z∗,
4. Analysis of the linearized operator (from ∂t + iLQ to ∂t + iHQ)

These difficulties become the strongest in the radial case m = 0.
1. Refined modulation equations,
2. Weaker repulsivity.
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Main result II: Blow-up dynamics and rotational instability

Thank you very much!
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Appendix

Strategy of the proof

The proof is in fact very simple! The key ingredient is the nonlinear coercivity of energy
as a consequence of self-duality and non-locality.

Some standard reductions:
1. H1,1-assumption and pseudoconformal transform
⇒ suffices to consider the finite-time blow-up case for finite energy solutions.

2. Finite-time blow-up and blow-up criterion
⇒ ‖u(t)‖Ḣ1

m
→ +∞ but E [u(t)] is conserved.

- For defocusing NLS, E [ψ] & ‖∇ψ(t)‖2L2 so this cannot happen. Thus there is no
non-scattering solutions.
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Appendix

Strategy of the proof

Now, the nonlinear coercivity of energy:

For m < 0 (CSS), we show that (CSS) is defocusing:

E [u] ∼M[u] ‖u‖2Ḣ1
m
.

For m ≥ 0 (CSS), we show the nonlinear coercivity of energy:

E [u] ∼M[u] ‖ε](t)‖2Ḣ1
m

where u(t) =
e iγ(t)

λ(t)
Q
( ·
λ(t)

)
+ ε](t) under suitable orthogonality conditions on ε]

and under the small energy regime:

0 ≤ E [u(t)]

‖u(t)‖2
Ḣ1
m

� 1.

This is NOT a linear coercivity, because ε] can have very large L2-norm.

Combining the above with the arguments of [Merle–Raphaël], soliton resolution follows.
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Appendix

Nonlinear coercivity of energy, m < 0

When m < 0, our goal is to show

E [u] ∼M[u] ‖u‖2Ḣ1
m
.

To show this, we first use the self-duality:

E [u] =
1
2

∫
|Duu|2 =

1
2

∫ ∣∣∣(∂r − m + Aθ[u]

r

)
u
∣∣∣2.

We recall that Aθ[u] = − 1
2

∫∞
0 |u|

2r ′dr ′ is always negative with the bound:

0 ≤ −Aθ[u] ≤ M[u]

4π
.

Note that m is also negative. Therefore, we can hope that the linear operator Du enjoys
some Hardy’s inequality, and this is in fact true:∫ ∣∣∣(∂r − m + Aθ[u]

r

)
f
∣∣∣2 ≥ C(m,M[u])‖f ‖2Ḣ1

m
, ∀f ∈ Ḣ1

m.

Point is that C depends only on M[u], which is a conserved quantity. This shows the
coercivity E [u] &M[u] ‖u‖2Ḣ1

m
.
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Appendix

Nonlinear coercivity of energy, m ≥ 0

When m ≥ 0, our goal is equivalent to showing that

E [Q + ε] ≥ C(m,M[u])‖ε‖2Ḣ1
m
, ∀ε ∈ Ḣ1

m

under (i) suitable orthogonality conditions on ε and (ii) ‖ε‖Ḣ1
m
� 1. By self-duality,

E [Q + ε] =
1
2

∫
|DQ+ε(Q + ε)|2 =

1
2

∫ ∣∣∣(∂r − m + Aθ[Q + ε]

r

)
(Q + ε)

∣∣∣2.
Interior r ≤ R: (where DQ+ε(Q + ε) = LQε+ O(ε2))

integral ∼
∫ R

0
|LQε|2rdr .

We can apply the linear coercivity by spending orthogonality conditions.
Exterior r ≥ R: we use the non-locality Aθ[Q](r)→ −(2m + 2) as r → +∞ to write

m + Aθ[Q + ε] ≈ m + Aθ[Q] + Aθ[ε] ≈ −(m + 2) + Aθ[ε].

and obtain
integral ∼

∫ ∞
R

∣∣∣(∂r − −(m + 2) + Aθ[ε]

r

)
ε
∣∣∣2rdr

Now −(m + 2) is negative, prove nonlinear Hardy’s inequality as in the m < 0 case!
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