Probabilistic well-posedness for a nonlinear Grushin-Schrödinger equation

Mickaël Latocca ${ }^{1}$
${ }^{1}$ University of Basel

March 2022, CY Days in Nonlinear Analysis
The work presented has been done in collaboration with Louise Gassot (University of Basel)

Motivation for the Grushin NLS

Consider $u(t): \mathbb{R}^{2} \longrightarrow \mathbb{C}$ satisfying

$$
\left\{\begin{array}{cl}
i \partial_{t} u+\Delta u & =|u|^{2} u \tag{NLS}\\
u(0) & =u_{0} \in H^{s}\left(\mathbb{R}^{2}\right)
\end{array}\right.
$$

Two formal conserved quantities:

$$
M(t)=\|u(t)\|_{L^{2}}^{2} \text { and } E(t)=\frac{1}{2}\|\nabla u(t)\|_{L^{2}}^{2}+\frac{1}{4}\|u(t)\|_{L^{4}}^{4} .
$$

- Scaling $s_{c}=0$. Standard LWP for $s>0$ uses dispersion: Cazenave-Weissler '90,
- Global theory in H^{1}, even in L^{2} Dodson '16.

Motivation for the Grushin NLS

What if we change a little bit the setting? Consider the equation

$$
\left\{\begin{array}{cl}
i \partial_{t} u+\Delta_{G} u & =|u|^{2} u \tag{NLS-G}\\
u(0) & =u_{0} \in H_{G}^{k},
\end{array}\right.
$$

$-\Delta_{G}=-\partial_{x}^{2}-x^{2} \partial_{y}^{2}$ is the Grushin operator.
$\|u\|_{H_{G}^{k}}=\left\|\left\langle-\Delta_{G}\right\rangle^{\frac{k}{2}} u\right\|_{L^{2}}$ are the adapted Sobolev spaces.

$$
u \mapsto u_{\lambda}(t, x)=\lambda u\left(\lambda^{2} t, \lambda x, \lambda^{2} y\right)
$$

scaling invariance $H_{G}^{\frac{1}{2}}$ critical.
Question: Can we construct solutions in H_{G}^{k} for $k>\frac{1}{2}$?

Deterministic picture

Well-posedness part $k>3 / 2$: Bahouri-Gallagher '01, stated for NLS-H ${ }^{1}$.

Proposition (Best local theory : Bahouri-Gallagher '01)

The Cauchy problem for (NLS-G) is locally well-posed in $\mathcal{C}^{0}\left([0, T], H_{G}^{k}\right)$ as soon as $k>\frac{3}{2}$.

Consequence of Sobolev embedding ${H_{G}^{\frac{3}{2}}}^{\frac{+}{\infty}} L^{\infty}$.
No result is known at energy regularity in H_{G}^{1} !
Bahouri-Barilari-Gallagher '19: anisotropic Strichartz estimates on $\left\|e^{i t \Delta_{G}} u_{0}\right\|_{L_{y}^{\infty} L_{T}^{p} L_{x}^{q}}$. Does not lead to a better local theory.

Deterministic picture

- $1 / 2<k<3 / 2$ part due to Bahouri-Gérard-Xu '00: due to non-existence of Strichartz estimate $L_{t, x, y}^{4}$ (See Gérard-Grellier '10 and Remark 2.12 in Burq-Gérard-Tzvetkov '04).
- III-posedness part $k<1 / 2$: Camps-Gassot '22. G_{δ} dense set of initial data producing norm inflation: for example, data $\left\|u_{0}\right\|_{H_{G}^{k}} \sim 1$ and $\|u(\varepsilon)\|_{H^{k}}>2$ for $\varepsilon \ll 1$.

Uses the supercriticality of the scaling!

Main result: random data techniques

Theorem (Deterministic version)

Let $k \in\left(1, \frac{3}{2}\right]$ There exists a dense set $X \subset H_{G}^{k} \backslash \bigcup_{\varepsilon>0} H_{G}^{k+\varepsilon}$ such that for every $u_{0} \in X$ there exists a unique solution to (G-NLS) associated to u_{0} in the space $e^{i t \Delta} u_{0}+\mathcal{C}^{0}\left(\left[0, T_{u_{0}}\right], H_{G}^{3^{2}+}\right) \hookrightarrow \mathcal{C}^{0}\left(\left[0, T_{u_{0}}\right], H_{G}^{\kappa}\right)$.

Theorem (Probabilistic version)

Let $k \in\left(1, \frac{3}{2}\right]$. There exists a measure μ_{k} supported by $\mathcal{X}_{1}^{k} \subset H_{G}^{k} \backslash \bigcup_{\varepsilon>0} H_{G}^{k+\varepsilon}$ such that for μ_{k} almost-every $u_{0} \in \mathcal{X}_{1}^{k}$ a unique solution to (G-NLS) exists in the space $u_{L}+\mathcal{C}^{0}\left([0, T], H_{G}^{\frac{3+}{2}}\right.$), where $u_{L}(t)=e^{i t \Delta_{G}} u_{0}$.

We can construct many such measures μ_{k} whose set \mathcal{M}_{k} satisfies:

$$
\overline{\bigcup_{\mu_{k} \in \mathcal{M}_{k}} \operatorname{supp} \mu_{k}}=H_{G}^{k} \backslash \bigcup_{\varepsilon>0} H_{G}^{k+\varepsilon} .
$$

What are we going to do?

(1) The probabilistic local well-posedness framework
(2) The randomisation
(3) The linear random estimates: first Cauchy theory
(9) The bilinear random estimate: better Cauchy theory
(3) Random-deterministic bilinear estimates

General probabilistic well-posedness framework

$$
\begin{equation*}
\partial_{t} u+\Delta_{G} u=|u|^{2} u \tag{NLS-G}
\end{equation*}
$$

The goal is to seek for $u=u_{L}^{\omega}+v$ solution to (NLS-G) (Bourgain '96, Burq-Tzvetkov '08) where:

- u_{L}^{ω} has regularity H^{k}, but is explicit and benefits from improved random estimates (more on that later!).
- v is more regular, i.e., the deterministic regularity $H_{G}^{\frac{3}{2}}$ which solves

$$
i \partial_{t} v+\Delta_{G} v=\left|u_{L}^{\omega}+v\right|^{2}\left(u_{L}^{\omega}+v\right) .
$$

Only need to solve the equation in v, requires estimates on u_{L}^{ω} !

Fixed point argument

Fixed point on the Duhamel formulation in v :

$$
v(t)=\Phi(v)(t):=-i \int_{0}^{t} e^{i\left(t-t^{\prime}\right) \Delta_{G}}\left(\left|u_{L}^{\omega}+v\right|^{2}\left(u_{L}^{\omega}+v\right)\right) \mathrm{d} t^{\prime}
$$

We bound

$$
\begin{aligned}
& \|\Phi v\|_{L_{T}^{\infty} H_{G}^{\frac{3}{2}}} \leqslant \int_{0}^{T}\left\|\left|u_{L}^{\omega}+v\right|^{2}\left(u_{L}^{\omega}+v\right)\right\|_{H_{G}^{\frac{3}{2}}} \\
& \quad \lesssim\left\|\left\|\left.u_{L}^{\omega}\right|^{2} u_{L}^{\omega}\right\|_{L_{T}^{1} H_{G}^{\frac{3}{2}^{+}}}+\right\| u_{L}^{\omega}|v|^{2}\left\|_{L_{T}^{1} H_{G}^{\frac{3}{2}}}+\right\|\left|u_{L}^{\omega}\right|^{2} v\left\|_{L_{T}^{\frac{1}{2}} H_{G}^{\frac{3}{2}}}+\right\|\left\|\left.v\right|^{2} v\right\|_{L_{T}^{1} H_{G}^{3^{2}}} \\
& \quad+\{\text { similar terms }\} .
\end{aligned}
$$

Identifying problematic terms

- The bound $\left\||v|^{2} v\right\|_{L_{T}^{1} H_{G}^{\frac{3}{2}}} \underset{ }{ } \lesssim T\|v\|_{L_{T}^{\infty} H_{G}^{\frac{3}{2}}}{ }^{+}$is obtained by composition and Sobolev embedding.
- For $\left|u_{L}^{\omega}\right|^{2} u_{L}^{\omega}$ the problem is that u_{L}^{ω} is not even $H_{G}^{\frac{3}{2}^{+}}$. Some non-trivial smoothing is needed!
- For $u_{L}^{\omega}|v|^{2}$ Also non-trivial smoothing needed: more complicated
(1) The probabilistic local well-posedness framework \downarrow
(2) The randomisation
(3) The linear random estimates: first Cauchy theory
(9) The bilinear random estimate: second Cauchy theory
(5) The mixed terms random-deterministic?

Fourier decomposition

Fourier partial transform in y of $-\Delta_{G}=-\partial_{x}^{2}-x^{2} \partial_{y}^{2}$,

$$
\mathcal{F}_{y \rightarrow \eta}(-\Delta)=-\partial_{x}^{2}+|\eta|^{2} x^{2}
$$

which is a rescaled harmonic oscillator of L^{2}-normalised eigenfunctions $|\eta|^{\frac{1}{4}} h_{m}\left(|\eta|^{\frac{1}{2}}.\right)$ associated to eigenvalue $(2 m+1)|\eta|$ where the h_{m} are Hermite functions, $\left(-\Delta+|x|^{2}\right) h_{m}=(2 m+1) h_{m}$.
Any $u \in L_{G}^{2}$ thus writes
and we have

$$
\|u\|_{H^{k}}^{2}=\sum_{m \geqslant 0}(1+|\eta|(2 m+1))^{k}\left\|\frac{f_{m}(\eta)}{|\eta|^{\frac{1}{4}}}\right\|_{L^{2}}^{2}
$$

Cost of $-\Delta$ is " $(2 m+1)|\eta|$ ".

The randomisation

We further decompose dyadically in $\eta \in[I, 2 I]$, $I \in 2^{\mathbb{Z}}$.

$$
u=\sum_{\substack{m \geqslant 0 \\ I \in 2^{\mathbb{Z}}}} u_{m, l}=\sum_{A \in 2^{\mathbb{N}}} \sum_{\substack{m, l \\ 1+(2 m+1) l \in[A, 2 A]}} u_{m, l}=\sum_{A \in 2^{\mathbb{N}}} u_{A},
$$

with $\mathcal{F}_{y \rightarrow \eta} u_{m, I}=\mathbf{1}_{\eta \in[I, 2 l]} f_{m}(\eta) h_{m}\left(|\eta|^{\frac{1}{2}} x\right)$. Observe that:

$$
\left\|u_{A}\right\|_{H^{s}} \sim A^{\frac{5}{2}}\left\|u_{A}\right\|_{L^{2}} .
$$

Definition

For $u_{0}=\sum_{m \geqslant 0, l \in 2^{Z}} u_{m, l}$ we introduce a randomisation

$$
u_{0}^{\omega}=\sum_{\substack{m \geqslant 0 \\ I \in 2^{\mathbb{Z}}}} g_{m, I}^{\omega} u_{m, I} \text { and } \mu_{u_{0}}=\operatorname{Im} \text { Measure of } \mathbb{P}
$$

where $\left(g_{m, l}\right)_{m, I}$ are i.i.d. Gaussian random variables.

Adapted space

The space \mathcal{X}_{ρ}^{k} is defined by the norm

$$
\|u\|_{\mathcal{X}_{\rho}^{k}}^{2}=\sum_{\substack{m \geqslant 0 \\ I \in 2^{\mathbb{Z}}}}(1+(2 m+1) I)^{k}\langle I\rangle^{\rho}\left\|u_{m, l}\right\|_{L^{2}}^{2}
$$

is a space of H_{G}^{k} functions, with additional $\frac{\rho}{2}$ regularity in the variable y.

Lemma

For any $\varepsilon>0, \mathcal{X}_{\rho}^{k} \nsubseteq H_{G}^{k+\varepsilon}$.
Proposition (Properties of the measures)
$\cup_{u_{0} \in \mathcal{X}_{1}^{k}} \operatorname{supp}\left(\mu_{u_{0}}\right) \subset H_{G}^{k} \backslash \bigcup_{\varepsilon>0} H_{G}^{k+\varepsilon}$ is dense in $H_{G}^{k} \backslash \bigcup_{\varepsilon>0} H_{G}^{k+\varepsilon}$.

Why these anisotropic spaces?
(1) The probabilistic local well-posedness framework \boldsymbol{V}
(2) The randomisation
(3) The linear random estimates: first Cauchy theory
(9) The bilinear random estimate: second Cauchy theory
(5) The mixed random-deterministic terms

Overcoming the obstruction $u_{L} \notin H_{G}^{\frac{3^{+}}{2}}$

Heuristics suggests:

$$
\langle\nabla\rangle^{\frac{3^{+}}{}}\left(\left|u_{L}^{\omega}\right|^{2} u_{L}^{\omega}\right) \simeq\left|u_{L}^{\omega}\right|^{2}\langle\nabla\rangle^{\frac{3^{2}}{}} u_{L}^{\omega}
$$

With "Good measure construction" $u_{L}^{\omega} \notin H_{G}^{3^{2}}$.
Next attempt by Hölder:

$$
\left\|\left|u_{L}^{\omega}\right|^{2} u_{L}^{\omega}\right\|_{H_{G}^{\frac{3}{2}}} \lesssim\left\|u_{L}^{\omega}\right\|_{L^{8}}^{2}\left\|u_{L}^{\omega}\right\|_{W_{G}^{\frac{3}{2}, 4}} .
$$

Can randomness can prove $u_{L}^{\omega} \in W_{G}^{\frac{3}{2}^{+}, 4}$?

Probabilistic toolbox: part I

Lemma (Decoupling estimate)

For all $r \geqslant 2$ and all complex numbers $\left(a_{n}\right)_{n \geqslant 0}$ there holds:

$$
\left\|\sum_{n \geqslant 0} a_{n} g_{n}^{\omega}\right\|_{L_{\Omega}^{r}} \lesssim \sqrt{r}\left(\sum_{n \geqslant 0}\left|a_{n}\right|^{2}\right)^{\frac{1}{2}}\left(g_{n}^{\omega} \text { are i.i.d. Gaussians }\right) .
$$

- Implies that outside a set of probability $\leqslant e^{-c R^{2}}$,

$$
\left|\sum_{n \geqslant 0} a_{n} g_{n}^{\omega}\right| \leqslant R\left(\sum_{n \geqslant 0}\left|a_{n}\right|^{2}\right)^{\frac{1}{2}} .
$$

- Deterministic estimate:

$$
\left|\sum_{n=N}^{2 N} a_{n} g_{n}^{\omega}\right| \leqslant \sqrt{N}\left(\sum_{n=N}^{2 N}\left|a_{n} g_{n}^{\omega}\right|^{2}\right)^{\frac{1}{2}}
$$

Randomness + deterministic input

$$
\begin{gathered}
\langle\nabla\rangle^{\frac{3}{2}} u_{L}^{\omega}(t, x)=\sum_{m, l} g_{m, l}^{\omega}\langle\nabla\rangle^{\frac{3}{2}}\left(e^{i t \Delta} u_{m, I}\right) \\
\left\|\langle\nabla\rangle^{\frac{3}{2}} u_{L}^{\omega}(t, x)\right\|_{L_{\Omega}^{r}} \lesssim \sqrt{r}\left(\sum_{m, I}\left|\langle\nabla\rangle^{\frac{3}{2}}\left(e^{i t \Delta} u_{m, I}(x)\right)\right|^{2}\right)^{\frac{1}{2}}
\end{gathered}
$$

Fourier localisation: $\left\|\langle\nabla\rangle^{\frac{3}{2}} u_{m, I}\right\|_{L^{p}}^{2} \lesssim(1+(2 m+1) I)^{\frac{3}{2}}\left\|u_{m, I}\right\|_{L^{p}}^{2}$.

$$
\left\|u_{L}^{\omega}\right\|_{L_{\Omega}^{r} L_{T}^{q} W_{G}^{3 / 2,4}} \lesssim \sqrt{r} T^{\frac{1}{q}}\left(\sum_{m, l}(1+(2 m+1) I)^{\frac{3}{2}}\left\|u_{m, l}\right\|_{L^{4}}^{2}\right)^{\frac{1}{2}}
$$

Probability decouples L^{4} norms!

Lemma (Deterministic input)

$$
\left\|u_{m, I}\right\|_{L^{4}} \lesssim(1+(2 m+1) I)^{-\frac{1}{8}}\langle I\rangle^{\frac{1}{2}}\left\|u_{m, I}\right\|_{L^{2}}
$$

Main linear random estimate

Proposition (Regularity gain in L^{4} norm)

Let $q \geqslant 1$. Outside a set of probability at most $e^{-c R^{2}}$ there holds

$$
\left\|u_{L}^{\omega}\right\|_{L_{T}^{q} W_{G}^{3^{2}}{ }^{+}, 4} \leqslant T^{\frac{1}{q}} R\left\|u_{0}\right\|_{\mathcal{X}_{1}^{5}}{ }^{4^{+}}
$$

Remarks: in L^{4} norms we have an $1 / 4$ derivative gain. In L^{2} norm this gain is 0 , no smoothing in usual Sobolev spaces.

This is the maximum gain: generally on $W_{G}^{s, p}$ the gain is computable by the same method.

The proof of the lemma

$$
\left\|u_{m, I}\right\|_{L^{4}} \lesssim\left\|\hat{u}_{m, I}\right\|_{L_{\eta}^{4 / 3} L_{x}^{4}}=\left\|f_{m}(\eta) \mathbf{1}_{\eta \sim I}\right\| h_{m}\left(|\eta|^{1 / 2} x\right)\left\|_{L_{x}^{4}}\right\|_{L_{\eta}^{4 / 3}}
$$

Lemma

(Linear Hermite estimate) $\left\|h_{m}\right\|_{L^{4}} \lesssim m^{-1 / 8}$.
Because there is only a gain in m this explains the $\mathcal{X}^{k, \rho}$ spaces.

Local theory: probabilistic improvement

Writing $\langle\nabla\rangle^{\frac{3^{2}}{}}\left(\left|u_{L}^{\omega}\right|^{2} u_{L}^{\omega}\right) \simeq\left|u_{L}^{\omega}\right|^{2}\langle\nabla\rangle^{\frac{3^{2}}{}} u_{L}^{\omega}$ by Hölder:

$$
\begin{aligned}
\left\|\left|u_{L}^{\omega}\right|^{2} u_{L}^{\omega}\right\|_{L_{T}^{1} H_{G}^{\frac{3}{2}}} & \lesssim\left\|u_{L}^{\omega}\right\|_{L_{T}^{4} L_{x}^{8}}^{2}\left\|u_{L}^{\omega}\right\|_{L_{T}^{2} W_{G}^{\frac{3}{2}, 4}} \\
& \lesssim T^{\frac{1}{2}}\left\|u_{L}^{\omega}\right\|_{L_{T}^{4} L_{x}^{8}}^{2}\left\|u_{0}\right\|_{\mathcal{X}_{1}^{5 / 4}} .
\end{aligned}
$$

Now only requires regularity $5 / 4$ on u_{0} and not $3 / 2$!
Anisotropic space \mathcal{X}_{1}^{k} : Hermite gains powers of m, not $A \sim m l$.
To go further: multilinear theory.
(1) The probabilistic local well-posedness framework \boldsymbol{V}
(2) The randomisation
(3) The linear random estimates: first Cauchy theory
(9) The bilinear random estimate: second Cauchy theory
(5) The mixed random-deterministic terms

Multilinear estimates

Theorem (Key multilinear estimates)

(1) Outside a set of probability at most $e^{-c R^{2}}$ there holds

$$
\left\|\left\|\left.u_{L}^{\omega}\right|^{2} u_{L}^{\omega}\right\|_{L_{T}^{q} H_{G}^{\frac{3}{2}}} \lesssim R^{3} T^{\frac{1}{q}}\right\| u_{0} \|_{\mathcal{X}_{1}^{1}}^{3} .
$$

(2) Outside a set of probability at most $e^{-c R^{2}}$ the following is true. For every $v, w \in \mathcal{C}^{0}\left([0, T], H_{G}^{\frac{3^{+}}{}}\right)$,

$$
\left\|u_{L}^{\omega} v w\right\|_{L_{T}^{q} H_{G}^{\frac{3}{2}}} \lesssim R^{3} T^{\frac{1}{q}}\left\|u_{0}\right\|_{\mathcal{X}_{1}^{1}}\|v\|_{H^{\frac{3^{2}}{2}}}\|w\|_{H_{G}^{\frac{3^{2}}{}}} .
$$

We concentrate on explaining (1).
Such estimates give a local theory in $H_{G}^{1^{+}}$

Probabilistic reductions

Time averages is not used: replace $u_{L}(t)=e^{i t \Delta} u_{0}^{\omega}$ by u_{0}^{ω}.

Proposition (Random-Random bilinear estimate)

Outside a set of probability at most $e^{-c R^{2}}$ there holds

$$
\left\|\left(u_{0}^{\omega}\right)^{2}\right\|_{H_{G}^{k+\frac{1}{2}}} \leqslant R^{2}\left\|u_{0}\right\|_{\mathcal{X}_{1}^{k}}^{2}
$$

$$
\left(u_{0}^{\omega}\right)^{2}=\sum_{B \gg A}\left(u_{0}^{\omega}\right)_{A}\left(u_{0}^{\omega}\right)_{B}+\underbrace{\sum_{A \sim B}\left(u_{0}^{\omega}\right)_{A}\left(u_{0}^{\omega}\right)_{B}}_{\text {Split derivatives }}
$$

Use of randomness

$$
\langle\nabla\rangle^{k+\frac{1}{2}}\left(u_{0}^{\omega}\right)^{2}=\sum_{m I \sim A \ll B \sim n J}\langle\nabla\rangle^{k+1 / 2}\left(u_{m, I} u_{n, J}\right) g_{m, l}^{\omega} g_{n, J}^{\omega}
$$

Theorem (Order 2 Wiener Chaos)

Let \mathcal{I} be countable and $\left(g_{n}\right)_{n \in \mathcal{I}}$ complex i.i.d. standard Gaussians. Then for all $r \geqslant 2$,

$$
\left\|\sum_{n, n^{\prime} \in \mathcal{I}} \Psi_{n, n^{\prime}} g_{n}^{\omega} g_{n^{\prime}}^{\omega}\right\|_{L^{r}(\Omega)} \lesssim r\left\|\sum_{n, n^{\prime} \in \mathcal{I}} \Psi_{n, n^{\prime}} g_{n}^{\omega} g_{n^{\prime}}^{\omega}\right\|_{L^{2}(\Omega)}
$$

Minkowski $r \geqslant 2$:

$$
\left\|\left(u_{0}^{\omega}\right)^{2}\right\|_{L_{\omega}^{r} H_{G}^{k+\frac{1}{2}}}^{2} \leqslant r^{2}\left\|\sum_{m I \sim A \ll B \sim n J}\right\| u_{m, I} u_{n, J}\left\|_{H_{G}^{k+\frac{1}{2}}} g_{n}^{\omega} g_{m}^{\omega}\right\|_{L_{\omega}^{2}}^{2}
$$

Reduction to deterministic estimates

Expand L_{ω}^{2} norm. Use: $\mathbb{E}\left[g_{n_{1}}^{\omega} g_{m_{1}}^{\omega} \bar{g}_{n_{2}}^{\omega} \bar{g}_{m_{2}}^{\omega}\right]=1$ iff $\left\{n_{1}, m_{1}\right\}=\left\{n_{2}, m_{2}\right\}$.

$$
\left\|\left(u_{0}^{\omega}\right)^{2}\right\|_{L_{\omega}^{r} H_{G}^{k+\frac{1}{2}}}^{2} \leqslant r^{2} \sum_{m / \sim A \ll B \sim n J}\left\|u_{m, I} u_{n, J}\right\|_{H_{G}^{k+\frac{1}{2}}}^{2}
$$

Proposition (Paradifferential input)

Let $m l \sim A$ and $n J \sim B$,

$$
\left\|u_{m, I} v_{n, J}\right\|_{H_{G}^{k+\frac{1}{2}}}^{2} \lesssim \max \{A, B\}^{k+1 / 2}\left\|u_{m, I} v_{n, J}\right\|_{L^{2}}^{2}
$$

$$
\left\|\left(u_{0}^{\omega}\right)^{2}\right\|_{L_{\omega}^{r} H_{G}^{k+\frac{1}{2}}}^{2} \leqslant r^{2} B^{k+\frac{1}{2}} \sum_{m / \sim A \ll B \sim n J}\left\|u_{m, l} u_{n, J}\right\|_{L^{2}}^{2}
$$

The main deterministic bilinear estimate

Proposition (Key bilinear estimate)

For any n, m, I, J there holds:

$$
\left\|u_{m, I} v_{n, J}\right\|_{L^{2}}^{2} \lesssim \min \left\{\frac{J\langle I\rangle}{A^{\frac{1}{2}}}, \frac{I\langle J\rangle}{B^{\frac{1}{2}}}\right\}\left\|u_{m, I}\right\|_{L^{2}}^{2}\left\|v_{n, J}\right\|_{L^{2}}^{2} .
$$

We write:

$$
\begin{aligned}
& \mathcal{F}_{y \rightarrow \eta}\left(u_{m, l} v_{n, J}\right)(x, \eta)=\hat{u}_{m, l} * \hat{v}_{n, J}(x, \eta) \\
& \quad=\int_{\eta_{1}+\eta_{2}=\eta} f_{m}\left(\eta_{1}\right) f_{n}\left(\eta_{2}\right) \mathbf{1}_{\left(\left|\eta_{1}\right|,\left|\eta_{2}\right|\right) \in[I, 2 I] \times[J, 2 J]} h_{m}\left(\left|\eta_{1}\right|^{\frac{1}{2}} x\right) h_{n}\left(\left|\eta_{2}\right|^{\frac{1}{2}} x\right)
\end{aligned}
$$

\rightsquigarrow Need to study $h_{n} h_{m}$

Bilinear estimates for Hermite functions

Lemma

For any n, m, η_{1}, η_{2},

$$
\left\|h_{m}\left(\left|\eta_{1}\right|^{\frac{1}{2}} \cdot\right) h_{n}\left(\left|\eta_{2}\right|^{\frac{1}{2}} \cdot\right)\right\|_{L^{2}}^{2} \lesssim \min \left\{\frac{1}{\sqrt{\left|\eta_{1}\right|(2 n+1)}}, \frac{1}{\sqrt{\left|\eta_{2}\right|(2 m+1)}}\right\}
$$

After rescaling, reduces to:

$$
\left\|h_{m} h_{n}(\alpha \cdot)\right\|_{L^{2}}^{2} \lesssim \frac{1}{\alpha \sqrt{2 m+1}},
$$

for $(2 n+1) \ll \alpha^{2}(2 m+1)$.
This is the bilinear Hermite input.

Bilinear Hermite estimate

(1) The probabilistic local well-posedness framework \boldsymbol{V}
(2) The randomisation
(3) The linear random estimates: first Cauchy theory
(4) The bilinear random estimate: second Cauchy theory
(5) The mixed random-deterministic terms

Mixed terms

Proposition (content of Section 7 in the paper)

Outside a set of probability $e^{-c R^{2}}$ there holds:

$$
\forall v \in H_{G}^{k},\left\|u^{\omega} v\right\|_{H_{G}^{k+\frac{1}{2}}} \leqslant R^{2}\left\|u_{0}\right\|_{X_{1}^{k}}\|v\|_{H_{G}^{k+\frac{1}{2}}} .
$$

We write:

$$
\hat{u}_{A}^{\omega}=\sum_{m, l} f_{m, l}^{\omega}(\eta) h_{m, l}\left(|\eta|^{\frac{1}{2}} x\right) \quad \hat{v}_{B}=\sum_{n, J} g_{n, J}(\eta) h_{n, J}\left(|\eta|^{\frac{1}{2}} x\right)
$$

Write:

$$
\left\|u_{A}^{\omega} v_{B}\right\|_{L^{2}}^{2}=\int_{x} \hat{u}_{A}^{\omega} * \hat{\bar{u}}_{A}^{\omega} \hat{v}_{B} * \hat{\bar{v}}_{B}
$$

Mixed terms (end)

Re-write everything as

$$
\left\|u_{A}^{\omega} v_{B}\right\|_{L^{2}}^{2}=\sum_{\psi=\left(n_{1}, n_{2}, m_{1}, m_{2}, \ldots\right)} \mathbf{J}_{\psi}^{\omega} \mathbf{K}_{\psi}
$$

Hölder estimates and deterministic treatment available on \mathbf{K} : just as before.

Khinchine only possible on \mathbf{J}^{ω} : Important! Khinchine set of probability depends on the coefficients to which it is applied!

Questions?

