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Lieb-Thirring inequality

For all V € L""2 (R R), we have

o . , > % ford =1

> (A + V)" < L%d/ V) "2dx,  y{>0 ford=2
JRd

=i >0 ford>3

where An(—A + V) is the nth min-max level of the Friedrichs extension of —A + V/,
which is the nth eigenvalue when it exists and 0 otherwise.

~v = 1: kinetic energy of fermions, stability of matter
v =3/2, d = 1: integrable, KdV solitons, inverse scattering
v = 0: conformal invariance, Yamabe problem

@ v =2, d =2: dimension of attractors for Navier-Stockes, magnetohydrodynamics
R.L. Frank, The Lieb-Thirring inequalities: Recent results and open problems, arXiv:2007.09326 (2020)
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Motivation: stability of matter (7 = 1)

» Two kinds of elementary particles in nature: fermions and bosons

e Dyson (1967): bosonic matter unstable (collapse due to Coulomb forces)
o Dyson-Lenard (1967-68): fermionic matter stable, involved analytical proof
o Lieb-Thirring (1975): much simpler proof of stability based on LT at y =1

» N quantum particles described by wavefunction W(xi, ..., xn) € L>((R*)",C)
which is either symmetric (bosons) or antisymmetric (fermions)

N (—A+ V) sym.
N
lowest eigenvalue of Z ( = By aF V(><j)) =
= Z )\ —A\ + V antisym.
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This talk: best constant L, 4

@ important for applications, in particular at y =1
@ several possible cases depending on

@ statistical mechanics interpretation: phase diagram with v > 1 ~ large entropy
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Lieb-Thirring is stronger than Gagliardo-Nirenberg-Sobolev

d
M(-A+ V)| < LS}d/ V(x)""2 dx
R

is equivalent to the Gagliardo-Nirenberg-Sobolev inequality H(R9) < LP(R?)

d)p+2d

(/Rd|u(x)|'adx)”“"t” e ([ 1ol o) s [ 1Vuf o

d
2

d
2

v+§
and the best constants are related by L(1 = (251:1) : (2 )

(%)
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Lieb-Thirring is stronger than Gagliardo-Nirenberg-Sobolev

(1) 7+4
M(—A+ V)" <L, [ V(x)1"%dx
R

is equivalent to the Gagliardo-Nirenberg-Sobolev inequality H*(R?) «— LP(R9)
(2—d)p+2d

(/Kd\u(x)v’dx)d(” s (/| \dx) e /Rd\vu(x)\de

v+4 d
and the best constants are related by L(le)d = (2§1d) ’ (M) ()2

Idea: V € L7"% (R, R) variable dual to |u]® € L5 (R?,R), with  + ¢ = (&)

<oo ford=1 >1 ford=1
2<ps<oo ford=2 <+ ~v¢>0 ford=2
<A ford>3 >0 ford>3

Proof. Variational principle Ai(—A + V) = inf {/ |Vu|2 + V\u\2 : / |u|2 = 1}
R4 Rd

d(p—2)

2 2 2 2 2 GN 2 2
[ V6l VIl = [Fulfe = Vol g Tally > IVl = V- e (GHITul)
R
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Weyl’s law and the semi-classical constant

» We can take a constant potential in LT!

Theorem (Weyl 1911)

Let Q be any bounded open set with |0S2| = 0. Then, for every > 0 we have

dx d|

Z‘/\n(* — ple) // (Ipf® — plea)” 5 P

n>1 R9 xR ( 7T)
with L, = [, (1 = 1)7 2,

Lsc ‘ul7+ g /d|Q‘
—_—

. +d/2
Jpa(—pleq)” 4
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Weyl’s law and the semi-classical constant

» We can take a constant potential in LT!

Theorem (Weyl 1911)

Let Q be any bounded open set with |0S2| = 0. Then, for every > 0 we have

Z [An(—A — ,ullm // \p\ — plly ) g o =Ly /[”%édm\
>1 R xR (271') ——
- Jpa (— )Y/

with L,Y d= fRd (|P|2 - 1)1(2(17‘))"‘

» We have L, 4 > max (L(Wliy)d., 5 4). Could there be equality?

Theorem (Optimality of constant potentials)
For all d > 1, we have

L =LY, fory>3/2,
79 > Ly, fory <1.

Lieb-Thirring '76, Aizenman-Lieb '78, Laptev-Weidl '00, Helffer-Robert '90
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Comparing L") and L%,

In all dimensions d > 1, v +— Lfyl,)d /L% 4 is strictly decreasing. For d <7, it is crossing 1
at a unique point, which decreases with the dimension and equals 3/2 in d = 1. For
d > 8, we have L(wly)d < L% 4 for all v > 0.

’

Glaser-Grosse-Martin '78, Frank-Gontier-ML '21
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The case of N eigenvalues

AV S Ly

N— oo

ol = sup = = sup
y+g

i d
2 (RY) fRd V(X)i * dx o>vel?t 2(\;@") n=1
#0

d
L d
Jpa IVITT2=1

N 5
An(—A + V)|?
L S (=4 + V)] 3™ o

vel'
V.

Theorem (Existence, Frank-Gontier-ML '21)
Lety>Zind=1v>0ind>2.

° L(N) always has optimizers. Those may have M < N negative eigenvalues, but are

then also optimizers for L(M = L(N) Assuming N negative eigenvalues, then the eigenfns

uj of —A + V solve
N g
o ~y+4d -1
(-a-(eXmr il ) )u =y,
j=1

=v
where C = —= . We have |V(x)| < Cexp ( 2V A |x|>
(d+2 )L y+5-1
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e More precisely, any maximizing sequence (V,) normalized in L”%(Rd) can be
decomposed into bubbles:

K
- _ YN0 _
im |V, > V(=X ) 0
k=1 L”*j(u/)
up to a subsequence, with V) optimizers for L(Nk = LﬁyNd, ZkK 1Nk =N, and

Ix$9) — x| 5 oo for k # K.
e At v =0 in d > 3, similar result but need to count zero-energy resonances in addition
to the negative eigenvalues. Dilations appear in bubble decomposition. Maximizers solve

(o= (5 o=

with f; € H*(R9) (zero-energy resonances). We have V/(x) ~ c/|x|* at infinity.

Remarks:

Concentration-compactness

Difficulty: V € L7F9/2(RY) i eigenvalues/functions is highly nonlinear

For v > 0, subcriticality seen for eigenfunctions. Problem is locally compact
[if Vi, — V weakly but tightly in L”d/z(Rd), then spectrum converges]

At v = 0, optimizers only have zero-energy resonances. Those are true
eigenfunctions in dimensions d > 5
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Binding through (nonlinear) quantum tunnelling for v > 2 — d/2

Theorem (Binding for v > max(0,2 — d/2), Frank-Gontier-ML '21)

Let v > max (0,2 — £). For every N > 1, we have
L(2’V) > L(N)
hence L, 4 cannot be given by a potential having finitely many bound states:

Lya> LY forall N> 1.
Aty =0 wehaveLOd—L for all d > 3.

1
Proof: Use V}f)(x) = 7( —vO(x - Rel)"/*%*1 — v (x+ Rel)wr%*l) v -1
o(—=A+Vr)

2R
0

N
4 VvV .

There is an attraction if and only if v > max(0,2 — d/2)
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Summary and a conjecture

I
e B L

N =0

[SUIES T ST Y

Y

V # cnst V = cnst

Conjecture (Frank-Gontier-ML '21)

For v > max{0,2 — d/2}, Lieb-Thirring “optimizer” exists and is a periodic function
(possibly constant).

Wn
3
N & 1 2
Speculative “phase diagram”: — : | . . v
Lyg= LE,"_d) V periodic Lya= L,
only ind <3 solid fuid
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Numerics in 2D

In d = 2 we found periodic potentials which beat both L', and L%,

gamma = 1.1654
1.000010

— Llisc
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Important technical difficulties:
@ very small difference between the lattices and the fluid
@ binding energy really seems exponentially small, hard to catch

@ need very high precision and the problem is nonlinear
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Lieb-Thirring and KdV at v = 3 in 1D

» Scattering problem in 1D:
( Tzt V) Vi = kK>
ikx
wk(X) X—+00 €
with |a(k)]? = 1 + |b(k)|?

= (x) ed a(k)e™ + b(k)e ™

Theorem (Trace formula, Zaharov-Fadeev '76)

For a sufficiently nice V', we have

Z\/\ /Iog\()\kdk_136/V(x)2dx

At~y =3/2 ind =1, we have

g (N) _ ysc S
Ly =t{) =15, ==, VNeN

Equality for relectionless potentials (|a| = 1), which are exactly the KdV N solitons.

Gardner-Greene-Kruskal-Miura '74, Deift-Trubowitz '79, Frank-Gontier-ML '21
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The N = 1 KdV soliton is V(x) = —2/ cosh?(x) and the N-solitons are

1 1
2 — I 12 (= X)) = 1Ak ]2 (x—=X4) N
Vi) = —2-L togdet [ 1y + " DN
RV EE Nk =t
then Vg

dx?
X(t)(x) solves 0;V + 92V — 6VO,V = 0 with X;(t) = X; + 4t);

NI

3
16

Theorem (Periodic optimizers in 1D, Frank-Gontier-ML '21)

Let v = % and d = 1. For all 0 < k < 1, the { = 2K (k) periodic Lamé potential
V(x) = 2ksn(x|k)* — 1 — k” is also an optimizer of L; ; = =, in the sense that
o
i Sea Pn(CA = VIg)E 3
R—c0 fBR V2 - 16°
Here sn and K are the Jacobi elliptic function and complete elliptic integral of the first
kind, with modulus k.

1

— VVYVV |

V

k=0.2(£=3.32) k =0.7 (£ = 4.15) k = 0.995 (£ = 8.08)
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Conclusion

» Lieb-Thirring inequality
@ is important for applications in mathematical physics

@ has links with many areas of analysis

» Best constant
@ still unknown in many important cases

@ should be interpreted in the framework of statistical mechanics, with v playing a role
similar to a temperature

@ all the phases occur at v = 3/2 in 1D, which is an integrable system

@ more complicated phase diagram expected in d > 2
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