
New results on Lieb-Thirring inequalities

Mathieu LEWIN

(CNRS & Paris-Dauphine University)

with Rupert L. Frank (Munich) and David Gontier (ENS & Paris-Dauphine)

CY days in nonlinear analysis, March 31, 2022

Mathieu LEWIN (CNRS / Paris-Dauphine) Lieb-Thirring 1 / 14



Lieb-Thirring inequality

0
V

|λ1(−∆ + V )| ≤ ‖V−‖L∞

Theorem (Lieb-Thirring ’75–76, Cwikel-Lieb-Rozenblum ’72–77, Weidl ’96)

For all V ∈ Lγ+ d
2 (Rd ,R), we have

∞∑
n=1

|λn(−∆ + V )|γ ≤ Lγ,d

�
Rd

V (x)
γ+ d

2
− dx , γ


≥ 1

2
for d = 1

> 0 for d = 2

≥ 0 for d ≥ 3

where λn(−∆ + V ) is the nth min-max level of the Friedrichs extension of −∆ + V ,
which is the nth eigenvalue when it exists and 0 otherwise.

γ = 1: kinetic energy of fermions, stability of matter
γ = 3/2, d = 1: integrable, KdV solitons, inverse scattering
γ = 0: conformal invariance, Yamabe problem
γ = 2, d = 2: dimension of attractors for Navier-Stockes, magnetohydrodynamics

R.L. Frank, The Lieb-Thirring inequalities: Recent results and open problems, arXiv:2007.09326 (2020)
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Motivation: stability of matter (γ = 1)

I Two kinds of elementary particles in nature: fermions and bosons

Dyson (1967): bosonic matter unstable (collapse due to Coulomb forces)

Dyson-Lenard (1967–68): fermionic matter stable, involved analytical proof

Lieb-Thirring (1975): much simpler proof of stability based on LT at γ = 1

I N quantum particles described by wavefunction Ψ(x1, ..., xN) ∈ L2((R3)N ,C)
which is either symmetric (bosons) or antisymmetric (fermions)

lowest eigenvalue of
N∑
j=1

(
−∆xj + V (xj)

)
=


Nλ1(−∆ + V ) sym.

N∑
j=1

λj(−∆ + V ) antisym.

This talk: best constant Lγ,d

important for applications, in particular at γ = 1

several possible cases depending on γ

statistical mechanics interpretation: phase diagram with γ � 1 ∼ large entropy
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Lieb-Thirring is stronger than Gagliardo-Nirenberg-Sobolev

∣∣λ1(−∆ + V )
∣∣γ ≤ L

(1)
γ,d

�
Rd

V (x)
γ+ d

2
− dx

is equivalent to the Gagliardo-Nirenberg-Sobolev inequality H1(Rd) ↪→ Lp(Rd)

(�
Rd

|u(x)|p dx

) 4
d(p−2)

≤ C GNS
p,d

(�
Rd

|u(x)|2 dx

) (2−d)p+2d
d(p−2)

�
Rd

|∇u(x)|2 dx

and the best constants are related by L
(1)
γ,d =

(
2γ

2γ+d

)γ+ d
2
(

d
2γ

) d
2 (

C GN
p,d

) d
2

Idea: V ∈ Lγ+ d
2 (Rd ,R) variable dual to |u|2 ∈ L

p
2 (Rd ,R), with γ + d

2
=
(
p
2

)′
2 ≤ p


≤ ∞ for d = 1

<∞ for d = 2

≤ 2d
d−2

for d ≥ 3

⇐⇒ γ


≥ 1

2
for d = 1

> 0 for d = 2

≥ 0 for d ≥ 3

Proof. Variational principle λ1(−∆ + V ) = inf

{�
Rd

|∇u|2 + V |u|2 :

�
Rd

|u|2 = 1

}
�
Rd

|∇u|2 + V |u|2 ≥ ‖∇u‖2
L2 − ||V−||

L
γ+ d

2
||u||2Lp ≥ ‖∇u‖2

L2 − ||V−||
L
γ+ d

2

(
C GN
p,d‖∇u‖2

L2

) d(p−2)
2p
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Weyl’s law and the semi-classical constant

I We can take a constant potential in LT!

Theorem (Weyl 1911)

Let Ω be any bounded open set with |∂Ω| = 0. Then, for every µ > 0 we have∑
n≥1

|λn(−∆− µ1`Ω
)
|γ ∼

`→∞

�
Rd×Rd

(
|p|2 − µ1`Ω

)γ
−

dx dp

(2π)d
= Lsc

γ,d µγ+ d
2 `d |Ω|︸ ︷︷ ︸

�
Rd (−µ1`Ω)

γ+d/2
−

with Lsc
γ,d =

�
Rd

(
|p|2 − 1

)γ
−

dp
(2π)d

.

I We have Lγ,d ≥ max
(
L

(1)
γ,d , L

sc
γ,d

)
. Could there be equality?

Theorem (Optimality of constant potentials)

For all d ≥ 1, we have

Lγ,d

{
= Lsc

γ,d for γ ≥ 3/2,

> Lsc
γ,d for γ < 1.

Lieb-Thirring ’76, Aizenman-Lieb ’78, Laptev-Weidl ’00, Helffer-Robert ’90
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Comparing L
(1)
γ,d and Lsc

γ,d

Theorem

In all dimensions d ≥ 1, γ 7→ L
(1)
γ,d/Lsc

γ,d is strictly decreasing. For d ≤ 7, it is crossing 1
at a unique point, which decreases with the dimension and equals 3/2 in d = 1. For

d ≥ 8, we have L
(1)
γ,d < Lsc

γ,d for all γ ≥ 0.

Glaser-Grosse-Martin ’78, Frank-Gontier-ML ’21
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The case of N eigenvalues

L
(N)
γ,d := sup

V∈Lγ+ d
2 (Rd )

V− 6=0

∑N
n=1 |λn(−∆ + V )|γ�
Rd V (x)

γ+ d
2

− dx
= sup

0≥V∈Lγ+ d
2 (Rd )

�
Rd |V |

γ+ d
2 =1

N∑
n=1

|λn(−∆ + V )|γ ↗
N→∞

Lγ,d

Theorem (Existence, Frank-Gontier-ML ’21)

Let γ > 1
2

in d = 1, γ > 0 in d ≥ 2.

• L
(N)
γ,d always has optimizers. Those may have M < N negative eigenvalues, but are

then also optimizers for L
(M)
γ,d = L

(N)
γ,d . Assuming N negative eigenvalues, then the eigenfns

uj of −∆ + V solve (
−∆−

(
C

N∑
j=1

|λj |γ−1|uj |2
) 1

γ+ d
2
−1

︸ ︷︷ ︸
=V

)
uj = λj uj ,

where C = 2γ

(d+2γ)L
(N)
γ,d

. We have |V (x)| ≤ C exp

(
− 2
√
λN

γ+ d
2
−1
|x |
)

.
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• More precisely, any maximizing sequence (Vn) normalized in Lγ+ d
2 (Rd) can be

decomposed into bubbles:

lim
n→∞

∣∣∣∣∣
∣∣∣∣∣Vn −

K∑
k=1

V (k)(· − x (k)
n )

∣∣∣∣∣
∣∣∣∣∣
L
γ+ d

2 (Rd )

= 0

up to a subsequence, with V (k) optimizers for L
(Nk )
γ,d = L

(N)
γ,d ,

∑K
k=1 Nk = N, and

|x (k)
n − x

(k′)
n | → ∞ for k 6= k ′.

• At γ = 0 in d ≥ 3, similar result but need to count zero-energy resonances in addition
to the negative eigenvalues. Dilations appear in bubble decomposition. Maximizers solve(

−∆−
(

C
N∑
j=1

|fj |2
) 2

d−2
)

fj = 0

with fj ∈ Ḣ1(Rd) (zero-energy resonances). We have V (x) ∼ c/|x |4 at infinity.

Remarks:

Concentration-compactness
Difficulty: V ∈ Lγ+d/2(Rd) 7→ eigenvalues/functions is highly nonlinear
For γ > 0, subcriticality seen for eigenfunctions. Problem is locally compact
[if Vn ⇀ V weakly but tightly in Lγ+d/2(Rd), then spectrum converges]
At γ = 0, optimizers only have zero-energy resonances. Those are true
eigenfunctions in dimensions d ≥ 5
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Binding through (nonlinear) quantum tunnelling for γ > 2− d/2

Theorem (Binding for γ > max(0, 2− d/2), Frank-Gontier-ML ’21)

Let γ > max
(
0, 2− d

2

)
. For every N ≥ 1, we have

L
(2N)
γ,d > L

(N)
γ,d

hence Lγ,d cannot be given by a potential having finitely many bound states:

Lγ,d > L
(N)
γ,d , for all N ≥ 1.

At γ = 0 we have L
(2)
0,d = L

(1)
0,d for all d ≥ 3.

Proof: Use V
(2)
R (x) = −

(
− V (1)(x − Re1)γ+ d

2
−1 − V (1)(x + Re1)γ+ d

2
−1

) 1

γ+ d
2
−1

0

−1

0

σ(−∆+ VR)

2R

There is an attraction if and only if γ > max(0, 2 − d/2)
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Summary and a conjecture

0 1
2 1 3

2

d = 1

d = 2

d = 3

d ≥ 4

V ≡ cnst

N = ∞

V 6= cnst

Conjecture (Frank-Gontier-ML ’21)

For γ > max{0, 2− d/2}, Lieb-Thirring “optimizer” exists and is a periodic function
(possibly constant).

VN

Speculative “phase diagram”: γ

3
2

Lγ,d = L
(N)
γ,d

N ր

solid fluid

Lγ,d = Lsc
γ,dV periodic

1

only in d ≤ 3
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Numerics in 2D

In d = 2 we found periodic potentials which beat both L
(1)
γ,2 and Lsc

γ,2
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Important technical difficulties:

very small difference between the lattices and the fluid

binding energy really seems exponentially small, hard to catch

need very high precision and the problem is nonlinear
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Lieb-Thirring and KdV at γ = 3
2 in 1D

I Scattering problem in 1D:
(
− d2

dx2 + V
)
ψk = k2ψk

ψk(x) ∼
x→+∞

e ikx
=⇒ ψk(x) ∼

x→−∞
a(k)e ikx + b(k)e−ikx

with |a(k)|2 = 1 + |b(k)|2

Theorem (Trace formula, Zaharov-Fadeev ’76)

For a sufficiently nice V , we have∑
j

|λj(V )|
3
2 +

3

π

�
R

log |a(k)| k2dk =
3

16

�
R

V (x)2 dx

Corollary

At γ = 3/2 in d = 1, we have

L 3
2
,1 = L

(N)
3
2
,1

= Lsc
3
2
,1 =

3

16
, ∀N ∈ N.

Equality for relectionless potentials (|a| ≡ 1), which are exactly the KdV N solitons.

Gardner-Greene-Kruskal-Miura ’74, Deift-Trubowitz ’79, Frank-Gontier-ML ’21
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The N = 1 KdV soliton is V (x) = −2/ cosh2(x) and the N-solitons are

V~X (x) = −2
d2

dx2
log det

1N +
e−|λj |

1
2 (x−Xj )−|λk |

1
2 (x−Xk ))

|λj |
1
2 + |λk |

1
2

 ,

N∑
j=1

|λj |
3
2 =

3

16

then V~X (t)(x) solves ∂tV + ∂3
xV − 6V∂xV = 0 with Xj(t) = Xj + 4tλj

Theorem (Periodic optimizers in 1D, Frank-Gontier-ML ’21)

Let γ = 3
2

and d = 1. For all 0 < k < 1, the ` = 2K(k) periodic Lamé potential
V (x) = 2k2sn(x |k)2 − 1− k2 is also an optimizer of L 3

2
,1 = 3

16
, in the sense that

lim
R→∞

∑∞
n=1 |λn(−∆− V1BR )|

3
2�

BR
V 2

=
3

16
.

Here sn and K are the Jacobi elliptic function and complete elliptic integral of the first
kind, with modulus k.
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Conclusion

I Lieb-Thirring inequality

is important for applications in mathematical physics

has links with many areas of analysis

I Best constant

still unknown in many important cases

should be interpreted in the framework of statistical mechanics, with γ playing a role
similar to a temperature

all the phases occur at γ = 3/2 in 1D, which is an integrable system

more complicated phase diagram expected in d ≥ 2
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