# **Torus and split solutions** of the Landau-de Gennes model for nematic liquid crystals

# **CY Days in Nonlinear Analysis** 28-31/03/2022 Neuville-Sur-Oise

**Vincent Millot**, Université Paris Est Créteil (travaux en collaboration avec **F. Dipasquale** et **A. Pisante**)



# Nematic Liquid Crystals

State of matter : between liquid and crystal solid

Nematic phase : rod-like molecules No position order for the center of mass, but directional order **Topological defects :** threads (in greek "nema"), hedgehogs (points)



Three (local) phases :

- Uniaxial (one directional order) • Biaxial (a secondary directional order) • Isotropic (no directional order)



# The Q-tensor model of Landau-de Gennes

## Order parameter belongs to

$$\mathcal{S}_0 := \left\{ Q \in \mathcal{M}_{3 \times 3}(\mathbb{R}) : Q = Q^t \,, \, \operatorname{tr}(Q) = 0 \right\} \simeq \mathbb{R}^5$$

(with Frobenius scalar product -P: Q := tr(PQ))

A given configuration contained in  $\overline{\Omega} \subset \mathbb{R}^3$  is described through a mapping  $Q:\overline{\Omega}\to\mathcal{S}_0$ 

At a single point  $x \in \overline{\Omega}$ , three possible phases :

- Isotropic : Q(x) = 0
- Uniaxial : Q(x) has a double eigenvalue
- Biaxial : Q(x) has three distincts eigenvalues

# The biaxiality parameter : (unusual one)

For  $Q \in \mathcal{S}_0 \setminus \{0\}$ ,

 $\beta(Q) := \sqrt{6} \, \frac{\operatorname{tr}(Q^3)}{|Q|^3} \in [-1, 1] \qquad \left( \, \beta(Q) = 3\sqrt{6} \, \det(Q) \, \right)$ 

If  $\sigma(Q) = \{\lambda_1, \lambda_2, \lambda_3\}$  with  $\lambda_1 \leq \lambda_2 \leq \lambda_3$ , then

•  $\beta(Q) = 1 \iff \lambda_1 = \lambda_2 < \lambda_3 \iff Q$  positive uniaxial

- $\beta(Q) \in (-1, 1) \iff \lambda_1 < \lambda_2 < \lambda_3 \iff Q$  biaxial
- $\beta(Q) = -1 \iff \lambda_1 < \lambda_2 = \lambda_3 \iff Q$  negative uniaxial
- $Q = 0 \iff \lambda_1 = \lambda_2 = \lambda_3 \iff Q$  isotropic

# **Uniaxial Matrices :**

A matrix  $Q \in S_0 \setminus \{0\}$  is uniaxial iff

$$Q = s \left( \vec{n} \otimes \vec{n} - \frac{1}{3} \right)$$

Q positive uniaxial ⇔ s > 0
Q negative uniaxial ⇔ s < 0</li>



## The Landau-de Gennes energy (in the "one constant approximation")

# For $Q \in H^1(\Omega; \mathcal{S}_0)$ ,

$$E_{LDG}(Q) := \int_{\Omega} \frac{L}{2} |\nabla Q|^2 \, dx + \int_{\Omega} F_{\text{bulk}}(Q) \, dx$$

where 0 < L < 1 is the elasticity constant, and

$$F_{\text{bulk}}(Q) := -\frac{a^2}{2} \text{tr}(Q^2) - \frac{b^2}{3} \text{tr}(Q^3) + \frac{c^2}{4} \left( \text{tr}(Q^2) \right)^2$$
  
  $\neq 0, \ b \neq 0, \ c \neq 0 \text{ (material constants)}$ 

with  $a \neq 0, b \neq 0, c \neq 0$  (material constants)

We set

$$\widetilde{F}(Q) := F_{\text{bulk}}(Q)$$
 -

and

$$\widetilde{E}_{LDG}(Q) := \int_{\Omega} \frac{L}{2} |\nabla Q|$$

 $-\min_{\mathcal{S}_0} F_{\text{bulk}} \ge 0$ 

 $|P|^2 dx + \int_{\Omega} \widetilde{F}(Q) dx$ 

### The potential well :

$$\{\tilde{F} = 0\} = \left\{ Q = s^+ \left( \vec{n} \otimes \vec{n} - \frac{1}{3} I_d \right) : \vec{n} \in \mathbb{S}^2 \right\} \subset s^+ \sqrt{\frac{2}{3}} \mathbb{S}^4$$
with
$$s^+ := \frac{b^2 + \sqrt{b^4 + 24a^2c^2}}{4c^2}$$

 $\implies$  up to the multiplicative factor  $s^+ \sqrt{\frac{2}{3}}$ ,

$$\left\{\widetilde{F}=0\right\}=$$

that is,

 $\{\widetilde{F}=0\} = (\text{smooth}) \text{ embedding of } \mathbb{R}P^2 \text{ in } \mathbb{S}^4 \text{ (Veronese)}$ 

 $= \mathbb{R}P^2$ 

The nematic droplet - Energy minimizers in the limit  $L \rightarrow 0$ (Majumdar & Zarnescu 2010)

Assume  $\Omega = B_1$ , and consider the Dirichlet boundary condition

$$Q_{\rm b}(x) := s^+ \left(\frac{x}{|x|} \otimes \frac{x}{|x|} - \frac{1}{3}I_d\right), \qquad x \in$$

If

$$Q_L \in \operatorname{argmin}\left\{\widetilde{E}_{\mathrm{LDG}}(Q): Q \in H^1(B_1; \mathcal{S}_0), \ Q = Q_{\mathrm{b}} \ \operatorname{sur} \ \partial B_1\right\},\$$

then

$$Q_L \xrightarrow[L \to 0]{} Q_*$$

with  $Q_*(x) = s^+ \left( \vec{n}_*(x) \otimes \vec{n}_*(x) - \right)$ 

and

$$\vec{n}_* \in \operatorname{argmin}\left\{ \int_{B_1} |\nabla \vec{n}|^2 \, dx : \vec{n} \in H^1(B_1; \mathbb{S}^2) \,, \ \vec{n}(x) = \frac{x}{|x|} \, \operatorname{sur} \, \partial B_1 \right\}$$

 $\partial B_1$ (homeotropic)

$$\left(-\frac{1}{3}I_d\right)$$

### By a result due to Almgren & Lieb (1988),

so that

 $Q_*(x) = s^+ \left(\frac{x}{|x|} \otimes \frac{x}{|x|} - \frac{1}{3}I_d\right)$ 

Observe that

 $Q_*(Rx) = RQ_*(x)R^t$ 

(equivariant radial symmetry)





 $\forall R \in SO(3), \forall x \in B_1 \setminus \{0\}$ 

For L > 0 fixed,

1) Does  $Q_L$  present radial symmetry (equivariante)?

$$Q_L(Rx) = RQ_L(x)R^t \quad \forall$$

2) Is  $Q_L$  uniaxial? (with isotropic points)

### The radially symmetric critical point

• There exists a unique radially symmetric critical point of  $E_{LDG}$ (Ignat, Nguyen, Slastikov, Zarnescu 2014)

$$Q_{\mathrm{rad}}(x) := f_L(|x|) \left(\frac{x}{|x|} \otimes \frac{x}{|x|} - \frac{1}{3}I_d\right)$$

with  $f_L(0) = 0, f_L(1) = s^+, \text{ et } f_L \nearrow$ 

•  $Q_{\rm rad}$  is the unique critical point which is uniaxial (Lamy 2015)

 $\forall R \in SO(3)$ 



# Hedgehog instability and the biaxial torus

In a certain regime of the parameters L, a, b, c,

Gartland & Mkaddem 1999, Majumdar 2012, Ignat, Nguyen, Slastikov, Zarnescu 2015

 $\implies$  Full SO(3)-symmetry breaking + biaxial escape

**Expected minimizer :** The biaxial torus

- $Q_{\rm rad}$  is unstable
- (SO(2)) axial symmetry + No isotropic points



axis of positive uniaxiality

# torus of maximal biaxiality



# Main objective :

Explain this structure, at least partially, by **topological arguments** ("easy" with axial symmetry)  $\Rightarrow$  prove the absence of the isotropic phase **Case 1 :** With no symmetry ansatz Case 2 : With axial symmetry Analysis in the "Lyuksyutov regime" (of parameters)



#### The Lyutsukov regime

### **Renormalization et parameters réduction** Normalizing matrices by

$$\mathbf{Q} \leftarrow \frac{1}{s^+} \sqrt{\frac{3}{2}} Q \,,$$

#### the energy becomes

$$\widetilde{E}_{LDG}(Q) = \frac{2}{3}L(s^+)^2 \mathcal{E}_{\lambda},$$

with

$$\mathcal{E}_{\lambda,\mu}(\mathbf{Q}) := \int_{\Omega} \frac{1}{2} |\nabla \mathbf{Q}|^2 + \lambda W(\mathbf{Q}) +$$

où

$$\lambda := \sqrt{\frac{2}{3}} \, \frac{b^2 s^+}{L} > 0 \,, \qquad \mu :=$$

and

$$W(\mathbf{Q}) := \frac{|\mathbf{Q}|^3}{3\sqrt{6}} \left(1 - \beta(\mathbf{Q})\right) + \frac{1}{12\sqrt{6}} (3|Q|^2 + \frac{1}{12\sqrt{6}} (3|Q|$$

### $_{,\mu}(\mathbf{Q})$

 $\frac{\mu}{4}(1-|\mathbf{Q}|^2)^2 dx$ 

 $=\frac{a^2}{L}>0\,,$ 

 $-2|Q|+1)(|Q|-1)^2 \ge 0$ 

# $\implies$ We are interested in the regime $\mu \rightarrow +\infty$ (with $\lambda$ fixed)

The limiting effective energy is

$$\mathcal{E}_{\lambda}(Q) := \int_{\Omega} \frac{1}{2} |\nabla Q|^2 + \lambda W$$

avec

$$W(Q) = \frac{1}{3\sqrt{6}} \left(1 - \frac{1}{3\sqrt{6}}\right)$$

 $\implies$  By Ginzburg-Laudau type theories : If any minimizer of  $\mathcal{E}_{\lambda}$  are **smooth**, then minimizers of  $\mathcal{E}_{\lambda,\mu}$  **do not present the isotropic phase** for  $\mu$  large enough.

# V(Q) dx pour $Q \in H^1(\Omega; \mathbb{S}^4)$

# $-\beta(Q)) \qquad \forall Q \in \mathbb{S}^4$

### Theorem

Let  $\Omega \subset \mathbb{R}^3$  be a bounded open set with  $\partial \Omega$  of class  $C^3$ , and  $Q_b \in C^{1,1}(\partial \Omega; \mathbb{S}^4)$ . Assume that any minimizer of  $\mathcal{E}_{\lambda}$  over  $H^1_{Q_{\mathbf{b}}}(\Omega; \mathbb{S}^4)$  is continuous on  $\overline{\Omega}$ . If  $Q_{\mu} \in H^1(\Omega; \mathcal{S}_0)$  minimizes  $\mathcal{E}_{\lambda,\mu}$  over  $H^1_{Q_{\mu}}(\Omega; \mathcal{S}_0)$ , then  $Q_{\mu} \in C^{\omega}(\Omega) \cap C^{1,\alpha}(\overline{\Omega})$  for every  $\alpha \in (0,1)$ . Moreover, as  $\mu \to +\infty$ ,

1) there exists a subsequence and  $Q_*$  minimizing  $\mathcal{E}_{\lambda}$  over  $H^1_{Q_{\mathbf{b}}}(\Omega; \mathbb{S}^4)$ such that  $Q_{\mu} \to Q_*$  strongly  $H^1(\Omega)$ 

**2)**  $\mathcal{E}_{\lambda,\mu}(Q_{\mu}) \to \mathcal{E}_{\lambda}(Q_{*})$  and  $\mu \int_{\Omega} (1 - |Q_{\mu}|^2)^2 dx \to 0$ 

**3)**  $|Q_{\mu}| \rightarrow 1$  uniformly on  $\Omega$ 

In particular, for every  $\lambda \geq 0$ , there exists  $\mu_{\lambda} > 0$  such that

 $|Q_{\mu}| > 0$  in  $\overline{\Omega}$  whenever  $\mu > \mu_{\lambda}$ 

### A first step toward the biaxial torus

Let us now consider

- $\Omega$  diffeomorphic to  $B_1$
- $Q \in C^2(\partial \Omega; \mathbb{R}P^2)$  of the form

$$Q_{\rm b}(x) = \sqrt{\frac{3}{2}} \left( \vec{n}(x) \right)$$

- with  $\vec{n} \in C^2(\partial \Omega; \mathbb{S}^2)$  et  $\deg(\vec{n}) = 1$
- $\mu > \mu_{\lambda}$  so that  $|Q_{\mu}| > 0$  in  $\overline{\Omega}$

 $(x) \otimes \vec{n}(x) - \frac{1}{3}I_d$ 

# **Theorem** Let $Q \in C^1(\overline{\Omega}; \mathbb{S}^4) \cap C^{\omega}(\Omega)$ such that $Q = Q_b$ on $\partial \Omega$

are non empty, compact, and non simply connected.

**3)** If  $Q \in C^{\omega}(\overline{\Omega})$ , then the set of singular values of  $\beta \circ Q$  finite. Moreover,  $\{\beta \circ Q\}$  $Q = 1 \subset \overline{\Omega}$  is non empty, compact, and non simply connected. In particular,  $\{\beta \circ Q = 1\} \cap \Omega$  is non empty.

4) For every  $-1 < t_1 < t_2 < 1$ , if  $(t_1, t_2)$  does not contain any singular value, then  $\{\beta \circ Q \leq t_1\}$  et  $\{\beta \circ Q \geq t_2\}$  are mutually linked.

1) The set of critical values of  $\beta \circ Q$  is at most countable and it can accumulate only at 1. In addition, for every regular value -1 < t < 1, the surface  $\{\beta \circ Q = t\} \subset \Omega$  is smooth and has a connected component of positive genus.

2) For every  $-1 \le t_1 < t_2 < 1$ , the sets  $\{\beta \circ Q \le t_1\} \subset \Omega$  et  $\{\beta \circ Q \ge t_2\} \subset \overline{\Omega}$ 

# Rough idea of proof: positif genus statement

- Assume that  $t \in (-1, 1)$  is a regular value of  $\beta \circ Q$
- To make it simpler, assume that  $\Sigma := \{\beta \circ Q = t\}$  is connected
- By contradiction, if  $\Sigma$  is a sphere, then

$$U := \{\beta \circ Q > t\} \simeq B_1 \setminus B_{1/2}$$

- there exists  $v_3 \in C^1(\overline{U}; \mathbb{S}^2)$  such that Q
- $v_3 = \pm \vec{n}$  on  $\partial \Omega$ , thus deg $(v_3, \Sigma) = \pm 1$
- but  $\lambda_1 < \lambda_2 < \lambda_2$  on  $\Sigma$ , hence there exists  $v_1, v_2 \in C^1(\Sigma; \mathbb{S}^2)$  such that  $Q_{\mu}(x)v_{i}(x) = \lambda_{i}(x)v_{i}(x)$
- $\{v_1(x), v_2(x)\}$  basis of  $\{v_3(x)\}^{\perp}$  for every  $x \in \Sigma$
- $\{v_1, v_2\}$  is a trivialization of  $(\Sigma, T_{v_3} \mathbb{S}^2)$  contradiction since deg $(v_3) \neq 0$ .

is simply connected

$$_{\mu}(x)v_{3}(x) = \lambda_{3}(x)v_{3}(x) \; \forall x \in \overline{U}$$

## Theorem

If Q minimizes  $\mathcal{E}_{\lambda}$  over  $H^1_{Q_{\mathbf{b}}}(\Omega; \mathbb{S}^4)$ , then

**1)**  $Q \in C^{\omega}(\Omega) \cap C^{1,\alpha}(\overline{\Omega})$  for every  $\alpha \in (0,1)$ .

**2)** If  $\partial \Omega \in C^{k \vee 3, \alpha}$  and  $Q_{\rm b} \in C^{k, \alpha}(\partial \Omega)$  with  $k \geq 2$ , then  $Q \in C^{k, \alpha}(\overline{\Omega})$ 

**3)** If  $\partial \Omega \in C^{\omega}$  et  $Q_{\rm b} \in C^{\omega}(\partial \Omega)$ , then  $Q \in C^{\omega}(\Omega)$ 

- Let  $\Omega \subset \mathbb{R}^3$  be a bounded open set with  $\partial \Omega$  of class  $C^3$ , and  $Q_b \in C^{1,1}(\partial \Omega; \mathbb{S}^4)$ .

## Idea of proof

 $\mathcal{E}_{\lambda} =$ lower order perturbation of the Dirichlet energy

applies (Schoen & Uhlenbeck)

 $\implies Q$  is smooth away from a finite number of singularities in  $\Omega$ 

minimizing harmonic map from  $\mathbb{R}^3$  into  $\mathbb{S}^4$ By a result of Schoen & Uhlenbeck, all of them are trivial !  $\implies Q$  has no singularities

- $\implies$  The general regularity theory for minimizing harmonic maps into a manifold
- "Blowing-up" the map Q near a singularity, we obtain a non trivial 0-homogeneous

# Minimization under axial symmetry

- Now we assume that  $\Omega \subset \mathbb{R}^3$  is axially symmetric with respect to the vertical axis ( $\Omega$  still a topological ball)
- Identify rotations around the vertical axis with  $\mathbb{S}^1$
- Action of  $\mathbb{S}^1$  on  $\mathcal{S}_0$ :

 $Q \mapsto RQR^{t}$ 

- $\implies \mathbb{S}^4$  is invariant under the action of  $\mathbb{S}^1$  (and  $\mathbb{R}P^2$  as well)  $\Longrightarrow \mathcal{E}_{\lambda}(RQR^{t}) = \mathcal{E}_{\lambda}(Q) \text{ for } Q : \Omega \to \mathbb{S}^{4}$
- Equivariant map:  $Q: \Omega \to \mathbb{S}^4$  is  $\mathbb{S}^1$ -equivariant if

 $Q(Rx) = RQ(x)R^{\mathsf{t}} \quad \forall R \in \mathbb{S}^1$ 

# For $Q_{\rm b} \in C^{1,1}(\partial\Omega; \mathbb{S}^4)$ a given equivariant map, set $\mathcal{A}^{\mathrm{sym}}(\Omega, Q_{\mathrm{b}}) := \left\{ Q \in H^{1}(\Omega; \mathbb{S}^{4}) : Q \right\}$

and consider

 $\min_{Q \in \mathcal{A}^{\rm sym}(\Omega,Q)}$ 

 $\implies$  Existence through the Direct Method (closed contraint)  $\implies$  Solutions are critical points of  $\mathcal{E}_{\lambda}$  ("Palais symmetric criticality principle")

### $\implies$ Regularity of solutions ?

$$Q = Q_{\rm b} \text{ on } \partial\Omega, \ Q \text{ equivariant} \Big\},$$

$$\mathcal{E}_{\lambda}(Q)$$

#### Set

$$\mathbf{e}_0 := \frac{1}{\sqrt{6}} \begin{pmatrix} -1 & 0\\ 0 & -1\\ 0 & 0 \end{pmatrix}$$

 $\mathbf{e}_0$  and  $-\mathbf{e}_0$  are the only elements of  $\mathbb{S}^4$  invariant under  $\mathbb{S}^1$ 

 $\implies$  For  $Q: \Omega \rightarrow \mathbb{S}^4$  continuous and equivariant,  $Q(0, 0, x_3) \in \{\pm \mathbf{e}_0\}$ 

 $\implies$  If  $\Omega = B_1$  and  $Q_b(0, 0, \pm 1) = \pm \mathbf{e}_0$ , then  $\mathcal{A}^{\mathrm{sym}}(B_1, Q_{\mathrm{b}}) \cap C^0(\overline{\Omega}) = \emptyset.$ 

**Remark:**  $\beta(\mathbf{e}_0) = +1 \implies \mathbf{e}_0 \in \mathbb{R}P^2$  $\beta(-\mathbf{e}_0) = -1 \implies -\mathbf{e}_0 \notin \mathbb{R}P^2$ 

$$\begin{pmatrix} 0\\0\\2 \end{pmatrix} \in \mathbb{S}^4$$

### Theorem

Let  $\Omega \subset \mathbb{R}^3$  be an axially symmetric bounded open set with  $\partial \Omega$  of class  $C^3$ , and  $Q_{\rm b} \in C^{1,1}(\partial \Omega; \mathbb{S}^4)$  equivariant.

If Q minimizes  $\mathcal{E}_{\lambda}$  over  $\mathcal{A}^{\text{sym}}(\Omega, Q_{\text{b}})$ , then

1)  $Q \in C^{\omega}(\Omega \setminus \Sigma) \cap C^{1,\alpha}(\overline{\Omega} \setminus \Sigma)$  for every  $\alpha$  is a finite set.

2) If  $\partial \Omega \in C^{k \vee 3, \alpha}$  and  $Q_{\rm b} \in C^{k, \alpha}(\partial \Omega)$  with 3) If  $\partial \Omega \in C^{\omega}$  and  $Q_{\rm b} \in C^{\omega}(\partial \Omega)$ , then  $Q \in Q_{\rm b}$ 

Moreover, for each  $\bar{x} \in \Sigma$ , there exists  $Q_{\alpha} \in$  such that

 $\|Q^{\bar{x},\rho} - Q_{\alpha}\|_{C^{2}(B_{2}\setminus B_{1})} = O(\rho^{p}) \text{ as } \rho \to 0,$ with  $Q^{\bar{x},\rho}(y) := Q(\bar{x} + \rho y)$  and

$$Q_*(x) := \frac{1}{\sqrt{6}} \frac{1}{|x|} \begin{pmatrix} -x_3 & 0 & \sqrt{3}x_1 \\ 0 & -x_3 & \sqrt{3}x_2 \\ \sqrt{3}x_1 & \sqrt{3}x_2 & 2x_3 \end{pmatrix}$$

$$\in (0,1)$$
 where  $\Sigma \subset \Omega \cap \{ \operatorname{axe} - x_3 \}$ 

h 
$$k \ge 2$$
, then  $Q \in C^{k,\alpha}(\overline{\Omega} \setminus \Sigma)$   
 $\in C^{\omega}(\overline{\Omega} \setminus \Sigma)$   
 $\{\pm RQ_*R^{t} : R \in \mathbb{S}^1\}$  and  $p > 0$ 

# Homeotropic boundary condition in cylinders

The boundary data  $Q_{\rm b}$  is said to be homeotropic if

$$Q_{\rm b}(x) = \frac{\sqrt{3}}{\sqrt{2}} \Big(\vec{n}(x) \otimes \vec{n}(x) - \frac{1}{3}I_{\rm c}\Big)$$

where  $\vec{n}(x)$  denotes the unit normal.

# Cylindrical domains:



 $I_d \in \mathbb{R}P^2 \quad \text{for } x \in \partial \Omega$ 



$$h = \text{height}$$
  
 $\ell = \text{radius}$   
 $\Omega_{h,\ell}$ 



#### Theorem 1: large cylinders.

Let  $\Omega_{h,\ell}$  a cylindrical domain and  $Q_b$  its homeotropic boundary data. For  $\lambda \geq 0$  et h > 0 fixed, if  $\ell >> 1$  is large enough, then any solution of  $\min_{\mathcal{A}^{\mathrm{sym}}(\Omega_{h,l},Q_{\mathrm{b}})} \mathcal{E}_{\lambda}$ 

is smooth (i.e.,  $\Sigma = \emptyset$ ).

#### Theorem 2: thin and long cylinders.

Let  $\Omega_{h,\ell}$  a cylindrical domain and  $Q_{\rm b}$  its homeotropic boundary data. There exists a critical value  $\lambda_* > 0$  such that: for  $\lambda \geq 0$  and  $0 < \ell < \sqrt{\lambda_*/\lambda}$  fixed, if h >> 1 is large enough, then any solution Q of

> min  $\mathcal{E}_{\lambda}$  $\mathcal{A}^{\mathrm{sym}}(\Omega_{h,l},Q_{\mathrm{b}})$

is singular (i.e.,  $\Sigma \neq \emptyset$ ). Moreover,  $Card(\Sigma)$  is even and  $\beta(Q) = -1$  in "most of the vertical axis".