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The model.

We study solutions w = w(τ, x) ≥ 0 to the nonlinear diffusion

equation or quasilinear heat equation

∂τw = ∆wm, w(0) = w0 ≥ 0.

Depending on the value of m > 0, this is a model for

• diffusion of gas through a porous medium,

• population dynamics,

• gas kinetics,

• diffusion in plasma,

• certain geometric flows.

The archetype model for nonlinear diffusions.



Characteristic features: PME.

For m > 1, it features slow diffusion:

∂τw = ∆wm = ∇·( mwm−1︸ ︷︷ ︸
→0 as w→0

∇w).

Degenerate diffusion. Consequence: Finite speed of propagation,

i.e., compactly supported solutions remain compactly supported.

Well-posedness and regularity are well understood.



Characteristic features: FDE.

For m < 1, it features fast diffusion:

∂τw = ∆wm = ∇·( mwm−1︸ ︷︷ ︸
→∞ as w→0

∇w).

Singular diffusion. Consequence: Infinite speed of propagation, i.e.,

solutions become positive instantaneously.

Well-posedness and regularity are well understood.



Focus in this talk:

Large-time behavior



Large-time dynamics in RN .

• Convergence to self-similar Barenblatt solution

W (τ, x) = t−NαV (x/τα) :

Kamin ’73-’76, Friedman–Kamin ’80, Kamin–Vázquez ’88,

Vázquez ’03

• Rates of convergence: Carillo–Toscani ’00, Otto ’01, del

Pino–Dolbeault ’02, etc.

• Spectral analysis: Zel’dovitch–Barenblatt ’58,

Denzler–McCann ’05, CS ’13.

• Asymptotic expansions/Invariant manifolds: Angenent ’88,

Denzler–Koch–McCann ’14, CS ’15+, etc.



Slow diffusion in bounded domain Ω.

We impose Dirichlet boundary conditions: w = 0 on ∂Ω.

• Convergence to separation-of-variables solution (“friendly

giant”)

W (τ, x) = τ−βV (x),

also sharp rates of convergence: Aronson–Peletier ’81,

Vázquez ’04.

• In particular: w(τ)→ 0 as τ →∞.



Fast diffusion in bounded domain Ω.

We impose Dirichlet boundary conditions: w = 0 on ∂Ω.

• Extinction in finite time of bounded solutions, 0 ≤ w ≤ C ,

∃T = T (w0) such that w(τ)→ 0 as τ ↑ T ,

cf. Sabinina ’62, ’65, Beryman–Holland ’80.

• Convergence to a separation-of-variables solution

W (τ, x) = ((1−m)(T − τ))
1

1−mV (x)
1
m ,

cf. Berryman–Holland ’80, Feireisl–Simondon ’00.

• Sharp rates of convergence (at least partial results): for

m ∈ (mc , 1) with mc = N−2
N+2 by Bonforte–Figalli ’21; for

m = mc and radial solutions on a ball: Galaktinov–King ’02.



Rescaling.

Large time behavior best understood in rescaled variables.

Motivated by separation-of-variables solution,

W (τ, x) = ((1−m)(T − τ))
1

1−mV (x)
1
m ,

consider

w(τ, x) = ((1−m)(T − τ))
1

1−m v(t, x)
1
m ,

t = log

(
T

T − τ

) m
m−1

, p =
1

m
> 1,

which gives rise to

p−1∂tv
p −∆v = vp, −∆V = V p.

Goal: Find optimal rate of convergence for

v(t)→ V as t →∞.



The stationary problem −∆V = V p in Ω.

• In general, solutions to elliptic PDE are not unique.

• However, large time limit uniquely determined by initial

datum, ∃!V = V (w0) , cf. Feireisl–Simondon ’00.

• Formally, a stationary solution is a critical point of the

Lyapunov functional

1

2

∫
Ω
|∇V |2 dx − 1

p + 1

∫
Ω
V p+1 dx .

• Sobolev sub-criticality p < pc = 1
mc

= N+2
N−2 implies

compactness of embedding W 1,2
0 (Ω) ⊂ Lp+1(Ω).

• For p ∈ (1, pc), stationary solutions satisfy the boundary

estimates

dist(x , ∂Ω) . V (x) . dist(x , ∂Ω).

• For p > pc , existence of nonnegative bounded solutions may

fail.



The relative error h = v
V
− 1.

• Bonforte–Grillo–Vázquez ’12: Uniform convergence of relative

error:

‖h(t)‖L∞(Ω) = ‖v(t)− V

V
‖L∞(Ω) → 0 as t →∞.

• Change of perspective:

∂th + Lh = N[h],

with
Lh = −V−1−p∇·(V 2∇h)− (p − 1)h,

N[h] = ((1 + h)p − 1− ph)︸ ︷︷ ︸
.|h|2

+ (1− (1 + h)p−1)∂th︸ ︷︷ ︸
.|h||∂th|

.

Recall: V (x) ∼ dist(x , ∂Ω), hence L becomes singular on ∂Ω:

Lh = −V 1−p︸ ︷︷ ︸
→∞

∆h − 2V−p︸︷︷︸
→∞
∇V · ∇h − (p − 1)h.

• No boundary conditions!



Understanding the difficulties: The spectrum.

Consider

Lh = −V−1−p∇·(V 2∇h)− (p − 1)h.

• The operator L has a discrete spectrum on the Hilbert space

L2
p+1 induced by

‖h‖2
L2
σ

=

∫
Ω
h2 dµσ, dµσ = V σ dx .

• For h ≡ 1, it holds that

Lh = L1 = 1− p = (1− p)h.

Hence, there are negative eigenvalues.

• It can be proved that 1− p is the smallest eigenvalue.

Equivalently, there is no Poincaré inequality of the type

‖h‖L2
p+1
≤ C‖∇h‖L2

2
.



Understanding the difficulties: The linear entropy approach.

Consider linear dynamics

∂th + Lh = 0.

Then

1

2

d

dt

∫
Ω
h2 dµp+1 +

∫
Ω
|∇h|2 dµ2 = (p − 1)

∫
Ω
h2 dµp+1.

In the absence of a suitable Poincaré inequality, this identity

implies not even decay! We would need

c‖h‖2
L2
p+1
≤ ‖∇h‖2

L2
2

with c > p − 1.

Note:

(p − 1)‖h‖2
L2
p+1

= ‖∇h‖2
L2

2
iff h ∈ ker L.



The Bonforte–Figalli result.

Main strategy:

• Nonlinear entropy method.

• Restrict to “generic” domains for which ker L = {0}.
• Convergence in relative error, ‖h(t)‖L∞ → 0, ensures decay of

unstable modes.

• Apply improved Poincaré inequality for stable modes.

Theorem (Bonforte–Figalli CPAM ’21)

If Ω is generic, it holds that

‖h(t)‖L2
p+1

. e−λs t ,

where λs is the first positive eigenvalue of L.



Two questions:

What about “non-generic” domains?

AND

Do we know something about higher-order asymptotics?



“Non-generic” domains

Example (Coffman ’84, Li ’90, Byeon ’97, Akagi–Kajikiya

’14)

On sufficiently small annuli Ω = BR \ Br , there exists symmetry

breaking (i.e., non-radial) least energy solutions of

1

2

∫
Ω
|∇V |2 dx − 1

p + 1

∫
Ω
V p+1 dx .

Consequence: ∃{Vs}s stationary solutions with ∂s |s=0 Vs 6= 0.

=⇒ L(∂s |s=0 Vs/V0) = 0.

Thus

K := dim ker L > 0.



A new approach for arbitrary smooth domains based on a

dynamical systems argument



Main result: A dichotomy

Theorem (Choi–McCann–CS ’21+)

It EITHER holds that

‖h(t)‖L∞ & ‖h(t)‖ & 1

t
as t →∞,

OR

‖h(t)‖ . ‖h(t)‖L∞ . e−λs t as t →∞.



2nd result: Integrable kernels

By Bonforte–Figalli ’21: If ker L = {0}, then the convergence is

exponentially fast.

This can be extended:

Theorem (Choi–McCann–CS ’21+)

If the kernel is integrable, then the convergence is exponentially

fast.

Definition: A kernel is integrable if for every ψ ∈ ker L, ∃{Vs}s
stationary solutions with ψ = ∂s |s=0 Vs/V0 6= 0.

The idea of the proof goes back to works by Allard–Almgren ’81

and Simon ’85 in the context of minimal surfaces and geometric

evolution equations.



3rd result: Higher order asymptotics.

Theorem (Choi–McCann–CS ’21+)

If the convergence is exponentially fast, then

h(t, x) =
∑

λi∈[λs ,2λs)

Cie
−λi tϕi (x) + o

(
e−maxi λi t

)
,

where Lϕi = λiϕi and {ϕi}i is orthonormal, Ci ∈ R.



Idea of the proof of the dichotomy.



Key ingredient 1: New smoothing estimate

Proposition (Choi–McCann–CS ’21+)

Suppose ‖h(t)‖L∞ ≤ ε for all t. Then, for any k ∈ N0 and

t > 0, it holds

‖∂kt h(t)‖L∞ ≤ C (k, t)‖h0‖L2
p+1
.

Main consequence: Quadratic estimate on nonlinearity:

‖N[h(t)]‖L2
p+1

. (‖h(t)‖L∞ + ‖∂th(t)‖L∞) ‖h(t)‖L2
p+1

. ‖h(t − 1)‖L2
p+1
‖h(t)‖L2

p+1

. ε‖h(t)‖L2
p+1



Spectral decomposition.

Orthogonal projection onto stable, center and unstable eigenspaces:

hs = Psh, hc = Pch, hu = Puh,

∂tPh + LPh = PN[h].

Use smoothing estimates to get:

d

dt
‖hs‖+ (λs − Cε)︸ ︷︷ ︸

!
>0

‖hs‖ ≤ Cε (‖hu‖+ ‖hc‖) ,

∣∣∣∣ ddt ‖hc‖
∣∣∣∣ ≤ Cε (‖hs‖+ ‖hu‖+ ‖hc‖) ,

d

dt
‖hu‖+ (λu + Cε)︸ ︷︷ ︸

!
<0

‖hu‖ ≥ Cε (‖hs‖+ ‖hc‖) ,

where λu < 0 largest negative eigenvalue,

λs > 0 smallest positive eigenvalue.



Key ingredient 2. Known dynamical systems argument

Unstable modes cannot be active as

‖h(t)‖ → 0 as t →∞

by Bonforte–Grillo–Vázquez ’12.

Lemma (Merle–Zaag ’98, dichotomy ODE lemma)

EITHER

‖hu(t)‖+ ‖hs(t)‖ = o(‖hc(t)‖) as t →∞,

OR

‖hu(t)‖+ ‖hc(t)‖ = o(‖hs(t)‖) as t →∞.

Remark: Original applied to classify connections between critical

points for

∂tu −∆u = up.



If the stable modes dominate, ‖h(t)‖ . ‖hs(t)‖:

Starting point:

d

dt
‖hs‖+ (λs − Cε)︸ ︷︷ ︸

!
>0

‖hs‖ ≤ Cε (‖hu‖+ ‖hc‖) ≤ C̃ε‖hs‖,

gives exponential decay,

‖h(t)‖ . ‖hs(t)‖ . e−λ̃t ,

if ε is sufficiently small, where 0 < λs − λ̃ . ε.

For optimal rate, iterate

d

dt
‖hs‖+ λs‖hs‖ . ‖N[h(t)]‖ . ‖h(t − 1)‖‖h(t)‖ . e−2λ̃t ,

and use 2λ̃ > λs .



If the center modes dominate, ‖h(t)‖ . ‖hc(t)‖:

Starting point:

− d

dt
‖hc‖ . ε (‖hs‖+ ‖hu‖+ ‖hc‖) . ‖hc‖,

so that

‖h(t − 1)‖ . ‖hc(t − 1)‖ . ‖hc(t)‖ ≤ ‖h(t)‖.

Therefore

− d

dt
‖hc‖ ≤ ‖N[h(t)]‖ . ‖h(t − 1)‖‖h(t)‖ . ‖h(t)‖2 . ‖hc(t)‖2,

which gives the algebraic lower bound

‖h(t)‖ ≥ ‖hc(t)‖ & 1/t.



Comment on the smoothing estimate

Proposition (Choi–McCann–CS ’21+)

Suppose ‖h(t)‖L∞ ≤ ε for all t. Then, for any k ∈ N0 and

t > 0, it holds

‖∂kt h(t)‖L∞ ≤ C (k, t)‖h0‖L2
p+1
.

Main steps:

• L2
p+1-based energy estimates,

• maximal regularity estimates, for ∂th + Lh = f with h(0) = 0,

‖h‖L2(L2
2p) + ‖∇h‖L2(L2) + ‖∇2h‖L2(L2

2) . ‖f ‖L2(L2
2p),

• interpolation estimates,

• higher regularity in time and tangential directions,

• Sobolev embedding.



Thank you for your attention.


