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The model.

We study solutions w = w(7, x) > 0 to the nonlinear diffusion
equation or quasilinear heat equation

Orw=Aw", w(0)=wy>0.
Depending on the value of m > 0, this is a model for

e diffusion of gas through a porous medium,
e population dynamics,

e gas kinetics,

e diffusion in plasma,

e certain geometric flows.

The archetype model for nonlinear diffusions.



Characteristic features: PME.

For m > 1, it features slow diffusion:
orw = Aw™ =V-( mw™ ! Vw).
—_——
—0 as w—0

Degenerate diffusion. Consequence: Finite speed of propagation,
i.e., compactly supported solutions remain compactly supported.

Well-posedness and regularity are well understood.



Characteristic features: FDE.

For m < 1, it features fast diffusion:
Orw =Awm =V-( mw™ ! Vw).
——
—o00 as w—0

Singular diffusion. Consequence: Infinite speed of propagation, i.e.,
solutions become positive instantaneously.

Well-posedness and regularity are well understood.



Focus in this talk:

Large-time behavior



Large-time dynamics in RV.

e Convergence to self-similar Barenblatt solution
W(r, x) = e V(x/T%):

Kamin '73-'76, Friedman—Kamin '80, Kamin-Vazquez '88,
Véazquez '03

e Rates of convergence: Carillo-Toscani '00, Otto '01, del
Pino—Dolbeault '02, etc.

e Spectral analysis: Zel'dovitch—Barenblatt '58,
Denzler—-McCann '05, CS "13.

e Asymptotic expansions/Invariant manifolds: Angenent '88,
Denzler-Koch—McCann '14, CS '15+, etc.



Slow diffusion in bounded domain ().

We impose Dirichlet boundary conditions: w = 0 on 0f2.

e Convergence to separation-of-variables solution (“friendly
giant”)
W(r,x) =7""V(x),
also sharp rates of convergence: Aronson—Peletier '81,
Vazquez '04.

e In particular: w(7) — 0 as 7 — oc.



Fast diffusion in bounded domain ().

We impose Dirichlet boundary conditions: w = 0 on 0%2.
e Extinction in finite time of bounded solutions, 0 < w < C,
3T = T(wp) suchthat w(r) -0 as71T,

cf. Sabinina '62, '65, Beryman—Holland '80.

e Convergence to a separation-of-variables solution
W(r,x) = (1 = m)(T = 7)) =5 V()7

cf. Berryman—Holland '80, Feireisl-Simondon '00.
e Sharp rates of convergence (at least partial results): for
m € (me, 1) with me = N+2 by Bonforte—Figalli '21; for
m = mc and radial solutions on a ball: Galaktinov—King '02.



Large time behavior best understood in rescaled variables.
Motivated by separation-of-variables solution,

W(r,x) = (1 = m)(T — 7))=7 V(x)

El

)

consider

w(r,x) = (L = m)(T = 7)) =mv(t, x)m,

T \m1 1
t:|0g g ) p:;>17

which gives rise to

p Lo — Av=vP, —AV = VP
Goal: Find optimal rate of convergence for

v(t) >V ast— .



The stationary problem —AV = V? in Q.

e In general, solutions to elliptic PDE are not unique.

e However, large time limit uniquely determined by initial
datum, 3V = V(wp) , cf. Feireisl-Simondon '00.

e Formally, a stationary solution is a critical point of the

Lyapunov functional

1 1
/ yvdex—/ VPHL dx.
2 Ja p+1/a

e Sobolev sub-criticality p < pc = m% = % implies

compactness of embedding W,*(Q) C LPT1(Q).
e For p € (1, p.), stationary solutions satisfy the boundary
estimates

dist(x,002) < V(x) S dist(x, 09Q).

e For p > p., existence of nonnegative bounded solutions may
fail.



The relative error h = = i

e Bonforte—Grillo-Vazquez '12: Uniform convergence of relative

error:
v(t)—V

1A(t) | o) = 1=

e Change of perspective:

d¢h+ Lh = N[H],

||Loo(Q) —0 ast— oo.

with
Lh=—V~17PV.(V2Vh) — (p — 1)h,

N[A] = ((L+ h)P —1—ph)+ (1 — (1 + h)P"1)o;h.
<Ihf? <Ihlloc
Recall: V/(x) ~ dist(x, 92), hence L becomes singular on 9:
Lh=—-VY¥PAh—2VPVV-Vh—(p—1)h.
—— ——

—00 —00

e No boundary conditions!



Understanding the difficulties: The spectrum.

Consider
Lh=—V~1"PV.(V2Vh) — (p — 1)h.

e The operator L has a discrete spectrum on the Hilbert space
L2 induced by
M@:A#wmd%:ww.
e For h=1, it holds that
Lh=1L1=1—-p=(1-p)h

Hence, there are negative eigenvalues.
e It can be proved that 1 — p is the smallest eigenvalue.
Equivalently, there is no Poincaré inequality of the type

l4llz,, < CIIVAlg.



Understanding the difficulties: The linear entropy approach.

Consider linear dynamics
Oth+ Lh = 0.
Then

1d
sai | dup+ [ V2 diz = (p=1) [ B dipin

In the absence of a suitable Poincaré inequality, this identity
implies not even decay! We would need

2 2 . _
C||h||Lf,+1 < ||Vh||L% with ¢ > p— 1.

Note:
2 o 2 g
(p— 1)HhHI_IQ3+1 = HVh”/_g iff  h € kerL.



The Bonforte—Figalli result.

Main strategy:

o Nonlinear entropy method.
e Restrict to “generic’ domains for which ker L = {0}.

e Convergence in relative error, ||h(t)|/ .~ — 0, ensures decay of

unstable modes.

e Apply improved Poincaré inequality for stable modes.

Theorem (Bonforte—Figalli CPAM ’21)
If Q is generic, it holds that

< a—Ast
(e, S e,

where \g is the first positive eigenvalue of L.



Two questions:

What about “non-generic’ domains?
AND

Do we know something about higher-order asymptotics?



“Non-generic’ domains

Example (Coffman '84, Li '90, Byeon '97, Akagi—Kajikiya
'14)

On sufficiently small annuli Q = Bg \ B, there exists symmetry
breaking (i.e., non-radial) least energy solutions of

1/ \vadx—L/ VP dx.
2 Ja p+1Jg

Consequence: 3{V.}; stationary solutions with 0s|,_, Vs # 0.
= L(0s|s_g Vs/ Vo) =0.

Thus
K :=dimker L > 0.



A new approach for arbitrary smooth domains based on a

dynamical systems argument



Main result: A dichotomy

Theorem (Choi—-McCann—-CS '21+)
It EITHER holds that

[(t)ll 2 [[A(E)]] 2

1
E aSt—)OO,

OR
IA()]| S [1A(E)llee S eF as t — oo.



2nd result: Integrable kernels

By Bonforte—Figalli '21: If ker L = {0}, then the convergence is

exponentially fast.

This can be extended:

Theorem (Choi—McCann—-CS '21+)
If the kernel is integrable, then the convergence is exponentially
fast.

Definition: A kernel is integrable if for every ¢ € ker L, 3{V;}s
stationary solutions with ¢ = 0s|._, Vs/Vo # 0.

The idea of the proof goes back to works by Allard—Almgren '81
and Simon '85 in the context of minimal surfaces and geometric

evolution equations.



3rd result: Higher order asymptotics.

Theorem (Choi-McCann—CS ’21+)
If the convergence is exponentially fast, then

h(t,x) = Z CreNitei(x) + o (e_ max,-A,-t) 7
A€[er22s)

where Lp; = Nijp; and {¢;}; is orthonormal, C; € R.



Idea of the proof of the dichotomy.



Key ingredient 1:

Proposition (Choi—-McCann—-CS ’'21+)
Suppose ||h(t)|| =~ < e for all t. Then, for any k € No and
t > 0, it holds

1 h(t)ll < Clk, )]lholl 2,

Main consequence: Quadratic estimate on nonlinearity:

IV, S (A2l + 19e(D)lle=) ()22,
< At = 1)l 1Dz,

<
Sellh®lle,,



Spectral decomposition.

Orthogonal projection onto stable, center and unstable eigenspaces:
s = (Psln, e = IPelil,  lily = [Pl
0+Ph + LPh = PN[h].
Use smoothing estimates to get:
@ ol + (s — CYlall < Ce (il + el
>0

[hell] < Ce(l[hsll + [[hull + llAcll) ,

a9
dt

d
Jelhull + A+ Co)llhull = Ce(llhsl + NIAcll)
——
<0
where Ay < 0 largest negative eigenvalue,

As > 0 smallest positive eigenvalue.



Key ingredient 2.

Unstable modes cannot be active as
|h(t)]| — 0 ast— oo
by Bonforte—Grillo-Vazquez '12.
Lemma (Merle-Zaag '98, dichotomy ODE lemma)
EITHER

1hu(B)] + Ihs(2)l| = o(llac(2)]])  as t — oo,
OR

[hu ()]l + [[he(2)]] = o(l[As()]]) as t — oo

Remark: Original applied to classify connections between critical
points for

Oru — Au = uP.



If the dominate, ||h(t)|| < ||hs(t)]|:

Starting point:

d ~
Jillhsll+ (As = Celllhs|l < Ce([lhull + [lhc]]) < Cellhsll,
——
>0
gives exponential decay,
IA()] S NlAs(E)]] S e,
if ¢ is sufficiently small, where 0 < A\s — A < e.

For optimal rate, iterate
d < < < =P
Jellhsll+ Asllhs | S AINA(T S [[A(e = DII[A(E)] S e

and use 2\ > ).



If the dominate, ||h(t)]| < ||h(t)]|:

Starting point:
d < <

— g lhell S e (sl + llhull + llhell) < llAell,
so that

[A(t = DI S llhe(t = DI S [[he(2) ]| < [1A(2)]]-
Therefore

d

——lhell < INTA()II S N1ACE = DA S [0 < [lhe(B)]?,
which gives the algebraic lower bound

()]l = [lhe(2)ll Z 1/t



Comment on the smoothing estimate

Proposition (Choi-McCann—-CS '21+)
Suppose ||h(t)|| =~ < e for all t. Then, for any k € No and
t > 0, it holds

k
10 h(8)l| = < C(k; t)lholl 2, -

Main steps:
e L2, -based energy estimates,

e maximal regularity estimates, for O:h + Lh = f with h(0) = 0,
1l i3 ) + VAl 202y + 1V Al 203y S IFlliz,)s

interpolation estimates,

higher regularity in time and tangential directions,

Sobolev embedding.



Thank you for your attention.



