Leading order asymptotics for fast diffusions on a bounded domain

Christian Seis, WWU Münster

Joint work with
Beomjun Choi (POSTECH) and Robert McCann (Toronto).

The model.

We study solutions $w=w(\tau, x) \geq 0$ to the nonlinear diffusion equation or quasilinear heat equation

$$
\partial_{\tau} w=\Delta w^{m}, \quad w(0)=w_{0} \geq 0
$$

Depending on the value of $m>0$, this is a model for

- diffusion of gas through a porous medium,
- population dynamics,
- gas kinetics,
- diffusion in plasma,
- certain geometric flows.

The archetype model for nonlinear diffusions.

Characteristic features: PME.

For $m>1$, it features slow diffusion:

$$
\partial_{\tau} w=\Delta w^{m}=\nabla \cdot(\underbrace{m w^{m-1}}_{\rightarrow 0 \text { as } w \rightarrow 0} \nabla w) .
$$

Degenerate diffusion. Consequence: Finite speed of propagation, i.e., compactly supported solutions remain compactly supported.

Well-posedness and regularity are well understood.

Characteristic features: FDE.

For $m<1$, it features fast diffusion:

$$
\partial_{\tau} w=\Delta w^{m}=\nabla \cdot(\underbrace{m w^{m-1}}_{\rightarrow \infty \text { as } w \rightarrow 0} \nabla w) .
$$

Singular diffusion. Consequence: Infinite speed of propagation, i.e., solutions become positive instantaneously.

Well-posedness and regularity are well understood.

Focus in this talk:

Large-time behavior

Large-time dynamics in \mathbb{R}^{N}.

- Convergence to self-similar Barenblatt solution

$$
W(\tau, x)=t^{-N \alpha} V\left(x / \tau^{\alpha}\right):
$$

Kamin '73-'76, Friedman-Kamin '80, Kamin-Vázquez '88, Vázquez '03

- Rates of convergence: Carillo-Toscani '00, Otto '01, del Pino-Dolbeault '02, etc.
- Spectral analysis: Zel'dovitch-Barenblatt '58, Denzler-McCann '05, CS '13.
- Asymptotic expansions/Invariant manifolds: Angenent '88, Denzler-Koch-McCann '14, CS '15+, etc.

Slow diffusion in bounded domain Ω.

We impose Dirichlet boundary conditions: $w=0$ on $\partial \Omega$.

- Convergence to separation-of-variables solution ("friendly giant")

$$
W(\tau, x)=\tau^{-\beta} V(x)
$$

also sharp rates of convergence: Aronson-Peletier '81, Vázquez '04.

- In particular: $w(\tau) \rightarrow 0$ as $\tau \rightarrow \infty$.

Fast diffusion in bounded domain Ω.

We impose Dirichlet boundary conditions: $w=0$ on $\partial \Omega$.

- Extinction in finite time of bounded solutions, $0 \leq w \leq C$,

$$
\exists T=T\left(w_{0}\right) \quad \text { such that } \quad w(\tau) \rightarrow 0 \quad \text { as } \tau \uparrow T,
$$

cf. Sabinina '62, '65, Beryman-Holland '80.

- Convergence to a separation-of-variables solution

$$
W(\tau, x)=((1-m)(T-\tau))^{\frac{1}{1-m}} V(x)^{\frac{1}{m}}
$$

cf. Berryman-Holland '80, Feireisl-Simondon '00.

- Sharp rates of convergence (at least partial results): for $m \in\left(m_{c}, 1\right)$ with $m_{c}=\frac{N-2}{N+2}$ by Bonforte-Figalli '21; for $m=m_{c}$ and radial solutions on a ball: Galaktinov-King '02.

Rescaling.

Large time behavior best understood in rescaled variables.
Motivated by separation-of-variables solution,

$$
W(\tau, x)=((1-m)(T-\tau))^{\frac{1}{1-m}} V(x)^{\frac{1}{m}}
$$

consider

$$
\begin{aligned}
w(\tau, x) & =((1-m)(T-\tau))^{\frac{1}{1-m}} v(t, x)^{\frac{1}{m}} \\
t & =\log \left(\frac{T}{T-\tau}\right)^{\frac{m}{m-1}}, \quad p=\frac{1}{m}>1
\end{aligned}
$$

which gives rise to

$$
p^{-1} \partial_{t} v^{p}-\Delta v=v^{p}, \quad-\Delta V=V^{p} .
$$

Goal: Find optimal rate of convergence for

$$
v(t) \rightarrow V \quad \text { as } t \rightarrow \infty
$$

The stationary problem $-\Delta V=V^{p}$ in Ω.

- In general, solutions to elliptic PDE are not unique.
- However, large time limit uniquely determined by initial datum, $\exists!V=V\left(w_{0}\right)$, cf. Feireisl-Simondon '00.
- Formally, a stationary solution is a critical point of the Lyapunov functional

$$
\frac{1}{2} \int_{\Omega}|\nabla V|^{2} d x-\frac{1}{p+1} \int_{\Omega} V^{p+1} d x
$$

- Sobolev sub-criticality $p<p_{c}=\frac{1}{m_{c}}=\frac{N+2}{N-2}$ implies compactness of embedding $W_{0}^{1,2}(\Omega) \subset L^{p+1}(\Omega)$.
- For $p \in\left(1, p_{c}\right)$, stationary solutions satisfy the boundary estimates

$$
\operatorname{dist}(x, \partial \Omega) \lesssim V(x) \lesssim \operatorname{dist}(x, \partial \Omega)
$$

- For $p>p_{c}$, existence of nonnegative bounded solutions may fail.

The relative error $h=\frac{v}{v}-1$.

- Bonforte-Grillo-Vázquez '12: Uniform convergence of relative error:

$$
\|h(t)\|_{L^{\infty}(\Omega)}=\left\|\frac{v(t)-V}{V}\right\|_{L^{\infty}(\Omega)} \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

- Change of perspective:

$$
\partial_{t} h+L h=N[h],
$$

with

$$
\begin{aligned}
L h & =-V^{-1-p} \nabla \cdot\left(V^{2} \nabla h\right)-(p-1) h, \\
N[h] & =\underbrace{\left((1+h)^{p}-1-p h\right)}_{\lesssim|h|^{2}}+\underbrace{\left(1-(1+h)^{p-1}\right) \partial_{t} h}_{\lesssim|h|\left|\partial_{t} h\right|} .
\end{aligned}
$$

Recall: $V(x) \sim \operatorname{dist}(x, \partial \Omega)$, hence L becomes singular on $\partial \Omega$:

$$
L h=-\underbrace{V^{1-p}}_{\rightarrow \infty} \Delta h-2 \underbrace{V^{-p}}_{\rightarrow \infty} \nabla V \cdot \nabla h-(p-1) h .
$$

- No boundary conditions!

Understanding the difficulties: The spectrum.

Consider

$$
L h=-V^{-1-p} \nabla \cdot\left(V^{2} \nabla h\right)-(p-1) h .
$$

- The operator L has a discrete spectrum on the Hilbert space L_{p+1}^{2} induced by

$$
\|h\|_{L_{\sigma}^{2}}^{2}=\int_{\Omega} h^{2} d \mu_{\sigma}, \quad d \mu_{\sigma}=V^{\sigma} d x
$$

- For $h \equiv 1$, it holds that

$$
L h=\angle 1=1-p=(1-p) h
$$

Hence, there are negative eigenvalues.

- It can be proved that $1-p$ is the smallest eigenvalue.

Equivalently, there is no Poincaré inequality of the type

$$
\|h\|_{L_{p+1}^{2}} \leq C\|\nabla h\|_{L_{2}^{2}} .
$$

Understanding the difficulties: The linear entropy approach.

Consider linear dynamics

$$
\partial_{t} h+L h=0
$$

Then

$$
\frac{1}{2} \frac{d}{d t} \int_{\Omega} h^{2} d \mu_{p+1}+\int_{\Omega}|\nabla h|^{2} d \mu_{2}=(p-1) \int_{\Omega} h^{2} d \mu_{p+1}
$$

In the absence of a suitable Poincaré inequality, this identity implies not even decay! We would need

$$
c\|h\|_{L_{p+1}^{2}}^{2} \leq\|\nabla h\|_{L_{2}^{2}}^{2} \quad \text { with } c>p-1 .
$$

Note:

$$
(p-1)\|h\|_{L_{p+1}^{2}}^{2}=\|\nabla h\|_{L_{2}^{2}}^{2} \quad \text { iff } \quad h \in \operatorname{ker} L
$$

The Bonforte-Figalli result.

Main strategy:

- Nonlinear entropy method.
- Restrict to "generic" domains for which $\operatorname{ker} L=\{0\}$.
- Convergence in relative error, $\|h(t)\|_{L^{\infty}} \rightarrow 0$, ensures decay of unstable modes.
- Apply improved Poincaré inequality for stable modes.

Theorem (Bonforte-Figalli CPAM '21)

If Ω is generic, it holds that

$$
\|h(t)\|_{L_{p+1}^{2}} \lesssim e^{-\lambda_{s} t}
$$

where λ_{s} is the first positive eigenvalue of L.

Two questions:

What about "non-generic" domains?

AND

Do we know something about higher-order asymptotics?

"Non-generic" domains

Example (Coffman '84, Li '90, Byeon '97, Akagi-Kajikiya

 '14)On sufficiently small annuli $\Omega=B_{R} \backslash B_{r}$, there exists symmetry breaking (i.e., non-radial) least energy solutions of

$$
\frac{1}{2} \int_{\Omega}|\nabla V|^{2} d x-\frac{1}{p+1} \int_{\Omega} V^{p+1} d x
$$

Consequence: $\exists\left\{V_{s}\right\}_{s}$ stationary solutions with $\left.\partial_{s}\right|_{s=0} V_{s} \neq 0$.

$$
\Longrightarrow \quad L\left(\left.\partial_{s}\right|_{s=0} V_{s} / V_{0}\right)=0 .
$$

Thus

$$
K:=\operatorname{dim} \operatorname{ker} L>0 .
$$

A new approach for arbitrary smooth domains based on a dynamical systems argument

Main result: A dichotomy

Theorem (Choi-McCann-CS '21+)

It EITHER holds that

$$
\|h(t)\|_{L^{\infty}} \gtrsim\|h(t)\| \gtrsim \frac{1}{t} \quad \text { as } t \rightarrow \infty
$$

OR

$$
\|h(t)\| \lesssim\|h(t)\|_{L^{\infty}} \lesssim e^{-\lambda_{s} t} \quad \text { as } t \rightarrow \infty
$$

2nd result: Integrable kernels

By Bonforte-Figalli '21: If $\operatorname{ker} L=\{0\}$, then the convergence is exponentially fast.

This can be extended:

Theorem (Choi-McCann-CS '21+)

If the kernel is integrable, then the convergence is exponentially fast.

Definition: A kernel is integrable if for every $\psi \in \operatorname{ker} L, \exists\left\{V_{s}\right\}_{s}$ stationary solutions with $\psi=\left.\partial_{s}\right|_{s=0} V_{s} / V_{0} \neq 0$.

The idea of the proof goes back to works by Allard-Almgren ' 81 and Simon ' 85 in the context of minimal surfaces and geometric evolution equations.

3rd result: Higher order asymptotics.

Theorem (Choi-McCann-CS '21+)

If the convergence is exponentially fast, then

$$
h(t, x)=\sum_{\lambda_{i} \in\left[\lambda_{s}, 2 \lambda_{s}\right)} C_{i} e^{-\lambda_{i} t} \varphi_{i}(x)+o\left(e^{-\max _{i} \lambda_{i} t}\right),
$$

where $L \varphi_{i}=\lambda_{i} \varphi_{i}$ and $\left\{\varphi_{i}\right\}_{i}$ is orthonormal, $C_{i} \in \mathbb{R}$.

Idea of the proof of the dichotomy.

Key ingredient 1: New smoothing estimate

Proposition (Choi-McCann-CS '21+)

Suppose $\|h(t)\|_{L^{\infty}} \leq \varepsilon$ for all t. Then, for any $k \in \mathbb{N}_{0}$ and $t>0$, it holds

$$
\left\|\partial_{t}^{k} h(t)\right\|_{L^{\infty}} \leq C(k, t)\left\|h_{0}\right\|_{L_{p+1}^{2}} .
$$

Main consequence: Quadratic estimate on nonlinearity:

$$
\begin{aligned}
\|N[h(t)]\|_{L_{p+1}^{2}} & \lesssim\left(\|h(t)\|_{L^{\infty}}+\left\|\partial_{t} h(t)\right\|_{L^{\infty}}\right)\|h(t)\|_{L_{p+1}^{2}} \\
& \lesssim\|h(t-1)\|_{L_{p+1}^{2}}\|h(t)\|_{L_{p+1}^{2}} \\
& \lesssim \varepsilon\|h(t)\|_{L_{p+1}^{2}}
\end{aligned}
$$

Spectral decomposition.

Orthogonal projection onto stable, center and unstable eigenspaces:

$$
\begin{gathered}
h_{s}=P_{s} h, \quad h_{c}=P_{c} h, \quad h_{u}=P_{u} h, \\
\partial_{t} P h+L P h=P N[h] .
\end{gathered}
$$

Use smoothing estimates to get:

$$
\begin{aligned}
& \frac{d}{d t}\left\|h_{s}\right\|+\underbrace{\left(\lambda_{s}-C \varepsilon\right)}_{>0}\left\|h_{s}\right\| \leq C \varepsilon\left(\left\|h_{u}\right\|+\left\|h_{c}\right\|\right) \\
& \left|\frac{d}{d t}\left\|h_{c}\right\|\right| \leq C \varepsilon\left(\left\|h_{s}\right\|+\left\|h_{u}\right\|+\left\|h_{c}\right\|\right), \\
& \frac{d}{d t}\left\|h_{u}\right\|+\underbrace{\left(\lambda_{u}+C \varepsilon\right)}_{<0}\left\|h_{u}\right\| \geq C \varepsilon\left(\left\|h_{s}\right\|+\left\|h_{c}\right\|\right)
\end{aligned}
$$

where
$\lambda_{u}<0$ largest negative eigenvalue,
$\lambda_{s}>0$ smallest positive eigenvalue.

Key ingredient 2. Known dynamical systems argument

Unstable modes cannot be active as

$$
\|h(t)\| \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

by Bonforte-Grillo-Vázquez '12.
Lemma (Merle-Zaag '98, dichotomy ODE lemma) EITHER

$$
\left\|h_{u}(t)\right\|+\left\|h_{s}(t)\right\|=o\left(\left\|h_{c}(t)\right\|\right) \quad \text { as } t \rightarrow \infty
$$

OR

$$
\left\|h_{u}(t)\right\|+\left\|h_{c}(t)\right\|=o\left(\left\|h_{s}(t)\right\|\right) \quad \text { as } t \rightarrow \infty .
$$

Remark: Original applied to classify connections between critical points for

$$
\partial_{t} u-\Delta u=u^{p} .
$$

If the stable modes dominate, $\|h(t)\| \lesssim\left\|h_{s}(t)\right\|$:

Starting point:

$$
\frac{d}{d t}\left\|h_{s}\right\|+\underbrace{\left(\lambda_{s}-C \varepsilon\right)}_{>0}\left\|h_{s}\right\| \leq C \varepsilon\left(\left\|h_{u}\right\|+\left\|h_{c}\right\|\right) \leq \tilde{C} \varepsilon\left\|h_{s}\right\|,
$$

gives exponential decay,

$$
\|h(t)\| \lesssim\left\|h_{s}(t)\right\| \lesssim e^{-\tilde{\lambda} t}
$$

if ε is sufficiently small, where $0<\lambda_{s}-\tilde{\lambda} \lesssim \varepsilon$.
For optimal rate, iterate

$$
\frac{d}{d t}\left\|h_{s}\right\|+\lambda_{s}\left\|h_{s}\right\| \lesssim\|N[h(t)]\| \lesssim\|h(t-1)\|\|h(t)\| \lesssim e^{-2 \tilde{\lambda} t}
$$

and use $2 \tilde{\lambda}>\lambda_{s}$.

If the center modes dominate, $\|h(t)\| \lesssim\left\|h_{c}(t)\right\|$:

Starting point:

$$
-\frac{d}{d t}\left\|h_{c}\right\| \lesssim \varepsilon\left(\left\|h_{s}\right\|+\left\|h_{u}\right\|+\left\|h_{c}\right\|\right) \lesssim\left\|h_{c}\right\|
$$

so that

$$
\|h(t-1)\| \lesssim\left\|h_{c}(t-1)\right\| \lesssim\left\|h_{c}(t)\right\| \leq\|h(t)\|
$$

Therefore

$$
-\frac{d}{d t}\left\|h_{c}\right\| \leq\|N[h(t)]\| \lesssim\|h(t-1)\|\|h(t)\| \lesssim\|h(t)\|^{2} \lesssim\left\|h_{c}(t)\right\|^{2}
$$

which gives the algebraic lower bound

$$
\|h(t)\| \geq\left\|h_{c}(t)\right\| \gtrsim 1 / t
$$

Comment on the smoothing estimate

Proposition (Choi-McCann-CS '21+)

Suppose $\|h(t)\|_{L^{\infty}} \leq \varepsilon$ for all t. Then, for any $k \in \mathbb{N}_{0}$ and
$t>0$, it holds

$$
\left\|\partial_{t}^{k} h(t)\right\|_{L^{\infty}} \leq C(k, t)\left\|h_{0}\right\|_{L_{p+1}^{2}} .
$$

Main steps:

- L_{p+1}^{2}-based energy estimates,
- maximal regularity estimates, for $\partial_{t} h+L h=f$ with $h(0)=0$,

$$
\|h\|_{L^{2}\left(L_{2 p}^{2}\right)}+\|\nabla h\|_{L^{2}\left(L^{2}\right)}+\left\|\nabla^{2} h\right\|_{L^{2}\left(L_{2}^{2}\right)} \lesssim\|f\|_{L^{2}\left(L_{2 p}^{2}\right)},
$$

- interpolation estimates,
- higher regularity in time and tangential directions,
- Sobolev embedding.

Thank you for your attention.

