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Nonlinear Schrödinger equations

Nonlinear Schrödinger equations (NLS):

i∂tu + ∆u = ±|u|p−1u, (t, x) ∈ R× Td , u(t, x) ∈ C

Conserved Quantities:

M[u] =

∫
Td

|u|2dx , E [u] =

∫
Td

1

2
|∇u|2dx ± 1

p + 1

∫
Td

|u|p+1dx .

I Typical expected dynamical properties: Recurrence properties,
Energy Cascade?

I Macroscopic description of the flow.
I One way is to equip some “natural” probability measures and study

their evolution along the NLS flow on Td , which is the main
objective of this talk.

I Sometimes macroscopic properties lead to dynamical consequences.
For example, the existence of invariant measures implies the
recurrence property of the flow, thanks to Poincaré.



Gaussian measures
I We will define a Gaussian measure µs , formally of the form

Z−1e−
1
2‖u‖

2
Hs du = Z−1 exp

(
− 1

2

∑
k∈Zd

〈k〉2s |ûk |2
) ∏

k∈Zd

dûk .

I The above formal measure can be written as the limit of truncated
Gaussian measures

1

ZN

∏
|k|≤N

e−
1
2 〈k〉

2s |ûk |2 dûk .

I This indicates that µs can be induced by the randomization: Given a
probability space (Ω,F ,P),

ω 7→ φω(x) :=
∑
k∈Zd

gk(ω)

〈k〉s
e ik·x ,

where (gk(ω))k∈Zd are i.i.d. complex Gaussian random variables on
Ω, with mean 0 and variance 1.

I µs can be also identified with its covariance operator 〈∇〉−2s from
H−s 7→ Hs .



Gaussian measures: sequel
Q: The measure µs is defined on which space?

I For N < M,

E
[∥∥∥ ∑

N≤|k|≤M

gk(ω)

〈k〉s
e ik·x

∥∥∥2

Hσ(Td )

]
∼

∑
N≤|k|≤M

1

〈k〉2s−2σ

converges if and only if

σ < s − d

2
.

We conclude that
φω ∈ L2(Ω; Hσ(Td))

for every σ < s − d
2 . So µs is supported on

H(s− d
2 )− :=

⋂
σ<s− d

2

Hσ.

I Furthermore, µs(Hs− d
2 (Td)) = 0, in particular, µs(Hs) = 0.

I There is a particular importance for the measure µ1, related to the
Gibbs measure.



The Gibbs measure Φp+1
d model:

I Defocusing Φp+1
d model corresponds to the Hamiltonian

H[u] =
1

2

∫
Td

|∇u|2dx︸ ︷︷ ︸
Hki[u]

+
1

p + 1

∫
Td

|u|p+1dx︸ ︷︷ ︸
V [u]

with formal expression e−H[u]du. The Gibbs measure is expected to

be defined as dρ(u) = e−V [u]dµ1(u), where µ1 = “e−
1
2‖∇u‖2

L2 du′′ is
the Gaussian free field.

I The above construction is true only for d = 1, since for d ≥ 2, the
support of µ1 H(1−d/2)−(T) misses L2(Td). For higher dimensions,
we need renormalization for V [u] to define the Gibbs measure. The
renormalization changes the original Hamiltonian as well as its flow.

I For the construction, seminar work by: Glimm-Jaffe,
Lebowitz-Rose-Speer, Simon, Nelson, Wilson, Aizenman,
Barashkov-Gubinelli,....

I d = 1, 2, Φp+1
1 ,Φp+1

2 for any p ∈ 2N + 1;
I d = 3, Φ4

3 (for other p ??);
I d ≥ 4, Φp+1

d cannot be done for any p (Aizenman, Duminil-Copin).

I Only for d = 1, 2, Φp+1
d is absolutely continuous with respect to µ1.
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Gaussian measures under transformations
Definition
Given a reversible flow ϕ(t) and a Gaussian measure µ on some Banach
space X , we say that µ is quasi-invariant along ϕ(t) if ϕ(t)#µ� µ for
any t ∈ R.

I At reasonable regularity level (e.x. 1D NLS), invariant Gibbs measure
implies that the Gaussian free field µ1 is quasi-invariant along the
NLS flow: the transported measure Φ(t)#µ1 � µ1 for t ∈ R.

I In the infinite-dimensional space, transported measures become
singular easily:

I Cameron-Martin 1944: Let f ∈ Hσ(Td) and µf be the image of the
measure µs under the translation

u 7→ u + f

on Hσ. Then µf � µs if and only if f ∈ Hs(Td) for s > σ + d
2

.
Correspondingly, the Radon-Nikodym density is

e−‖f ‖
2
Hs−(u,f )Hs .

I Oh-Sosoe-Tzvetkov: Consider the flowmap φ(t) defined by the ODE
i∂tu = |u|2u. Then for any t 6= 0, φ(t)#µs is singular to µs (s ≥ 1).

I We now consider the specific flow defined by NLS. It turns out that
the dispersion can prevents the measure to become singular.



Main result

Defocusing cubic NLS on T2:

i∂tu + ∆u = |u|2u, (t, x) ∈ R× T2, u|t=0 = u0 ∈ Hσ.

I Scaling critical space Hsc (T2), sc = 0. Locally well-posed in Hσ, σ > 0
(Bourgain).

I The flowmap Φ(t) is is globally defined on Hσ, for σ ≥ 1, with the
property that (Bourgain, Colliander-Kwon-Oh)

‖Φ(t)u0‖Hσ(T2) . 〈t〉
α(σ)C(‖u0‖Hσ ).

Theorem (Deng-S.-Tzvetkov, ’21-’22)
For s ≥ 2, the Gaussian measure µs is quasi-invariant along the cubic
NLS flow Φ(t).

I suppµs = H(s−1)−(T2) where Φ(t) is globally defined. The required
regularity s ≥ 2 is such that on supp(µs), the flow Φ(t) is globally
well-defined.
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Comparison for the 2D invariant Gibbs measure problem
Theorem (Bourgain ’96, Deng-Nahmod-Yue ’19)
There exists a full µ1 measure (so full Φ2m+2

2 measure) set Σ ⊂ H0−(T2),
such that the flow : Φ(t) : of the renormalized NLS (Wick-ordered NLS):

i∂tu + ∆u =: |u|2mu := “
∑
k

e ik·x
( ∑

k1−k2+···+k2m+1=k
no paring: k2j−1 6=k2l

ûk1 ûk2 · · · ûk2m+1

)′′

is well-defined on Σ. Moreover, the Gibbs measure Φ2m+2
2 is invariant

along : Φ(t) :

I The Wick-ordering is necessary to define the nonlinearity on H0−

almost surely. Due to the low-regularity nature, the Cauchy problem
is very difficult to solve!

I In an impressive work of DNY, they extend Bourgain’s theorem from
m = 1 to any m, by introducing the novel Random averaging
operator theory to overcome an essential obstruction. Their method
inspires many other works.

I However, all these invariant Gibbs measure theorems does not
provide information on the transport properties for µ1, under the real
NLS flow.



Methodology I: Deterministic argument
Here we present several soft-analysis schemes developed in the works of
Tzvetkov and: Gunaratnam, Oh, Planchon, Sosoe, Visciglia, Weber, ...

Formally, dµs(u) = 1
Z e−‖u‖

2
Hs du, and we look for a suitable modified

energy
Es(u) := ‖u‖2

Hs + Rs(u) ∼ ‖u‖2
Hs

and look at the evolution of the measure (after suitable truncation)

dρs(u) := e−Rs (u)dµs(u)“ =
1

Z
e−Es (u)du′′.

The Radon-Nikodym density is (if exists) then e−(Es (Φ(t)u)−Es (u)). Though
Es(Φ(t)u) and Es(u) are both strongly diverging on supp(µs), the hope is
to use some smoothing property (time oscillation) of the dispersive flow.

Denote by Gs(τ) = d
dt Es(Φ(t)u)|t=τ :

I If we are able to show that∣∣∣ ∫ t

0

Gs(τ)dτ
∣∣∣ ≤ C (H[u])‖u‖θ

Hs− d
2
−

for some θ, then we are done (with the desired density if θ < 2,
otherwise we need a cutoff for ‖u‖

Hs− d
2
−).



Methodology II: Using the “random oscillation”
The second method is to exploit the random oscillation. Formally, if µs(A) = 0
(hence ρs(A) = 0), we want to show that ρs(Φ(t)A) = 0. We compute

d

dt
ρs(Φ(t)A)|t=t0 =

d

dt

∫
Φ(t)(A)

dρs(u)|t=t0 =

∫
A

d

dt
e−Es (Φ(t)u)|t=t0du,

thanks to the Liouville theorem. Recalling that

Gs(t0) =
d

dt
Es(Φ(t)u)|t=t0 ,

the above identity equals to∫
A

Gs(t0)e−Es (Φ(t0)u)du =

∫
Φ(t0)(A)

Gs(0)e−Es (u)du.

Then by Hölder, we have

| d
dt
ρs(Φ(t)A)|t=t0 | ≤ ‖Gs(0)‖Lp(dρs )ρs(Φ(t0)(A))1− 1

p , ∀p ≥ 2.

Then if we are able to show that

‖Gs(0)‖Lp(ρs ) ≤ Cp, ∀p ≥ 2,

then by Yudovich-type argument, we deduce that ρs(Φ(t)A) ≡ 0 for any t.



Modified energy for NLS?

Write
v(t) = e−it∆u(t), v(t) =

∑
k

vk(t)e ik·x .

If u(t) solves i∂tu + ∆u = |u|2u, then

∂tvk =
1

i

∑
k1−k2+k3=k

e−itΦ(~k)vk1 vk2 vk3 ,

where

Φ(~k) := |k1|2 − |k2|2 + |k3|2 − |k |2 = 2(k1 − k2) · (k2 − k3).

We have

1

2

d

dt
‖v(t)‖2

Hs = −1

4
Im

∑
k1−k2+k3−k4=0

k2 6=k1,k3

ψ2s(~k)e−itΦ(~k)vk1 vk2 vk3 vk4 ,

ψ2s(~k) = |k1|2s − |k2|2s + |k3|2s − |k4|2s .



Warming up: 1D analysis
Candidates for the Modified energy can be found by integration by part
(Poincaré-Dulac normal form):∑
k1−k2+k3−k4=0

k2 6=k1,k3

ψ2s(~k)e−itΦ(~k)vk1v k2vk3v k4 =∂t
( ∑
k1−k2+k3−k4=0

k2 6=k1,k3

ψ2s(~k)

−iΦ(~k)
e−itΦ(~k)vk1v k2vk3v k4

︸ ︷︷ ︸
N0(v)

)

−
∑

k1−k2+k3−k4=0
k2 6=k1,k3

ψ2s(~k)

−iΦ(~k)
e−itΦ(~k)∂t(vk1v k2vk3v k4 )

When d = 1, we have

ψ2s(~k) = −
(∫ 1

0

∫ 1

0

(∇2|·|2s)(k4+θ1(k2−k3)−θ2(k1−k2))dθ1dθ2

)
(k1−k2)·(k2−k3).

Thus |ψ2s(~k)| . max{|k1|, |k2|, |k3|}2s−2|Φ(~k)|. Then we get, for s ≥ 2,

d

dt

(
‖v(t)‖2

Hs +
1

2
ImN0(v)

)
. 1 + ‖v(t)‖2

Hs−1‖v(t)‖4

H
1
2

+ .

I Can be obtained to any nonlinearity p ∈ 2N + 1. There is a nice
physical-space based proof by Planchon-Tzvetkov-Visciglia.



2D Analysis, the setup

N0,t(v) =
∑

k1−k2+k3−k4=0

Φ(~k) 6=0

ψ2s(~k)
e−itΦ(~k)

−iΦ(~k)
vk1v k2vk3v k4 ,

R0,t(v) =
∑

k1−k2+k3−k4=0

Φ(~k)=0

ψ2s(~k)e−itΦ(~k)vk1v k2vk3v k4

R1,1,t(v) = 2
∑

k1−k2+k3−k4=0

Φ(~k) 6=0

ψ2s(~k)

Φ(~k)
e−itΦ(~k)

∑
p1−p2+p3=k1

e−itΦ(~p)vp1vp2vp3v k2vk3v k4 ,

R1,2,t(v) = −2
∑

k1−k2+k3−k4=0

Φ(~k) 6=0

ψ2s(~k)

Φ(~k)
e−itΦ(~k)

∑
q1−q2+q3=k2

e itΦ(~q)vk1vq1vq2vq3vk3v k4 .

Defining

Es,t(v) :=
1

2
‖v‖2

Hs +
1

4
ImN0,t(v),

then along the NLS flow, we have

d

dt
Es,t(v) :=

1

4
Im
[
R1,1,t(v) +R1,2,t(v)−R0,t(v)

]



Let us look at the simplest (resonant) term

R0,t(v) :=
∑

k1−k2+k3−k4=0

Φ(~k)=0

ψ2s(~k)e−itΦ(~k)vk1 vk2 vk3 vk4 .

W.L.O.G., we assume that vkj = P̂Nj v(kj) and N(1) ≥ N(2) ≥ N(3) ≥ N(4)

are the rearrangement of N1,N2,N3,N4.

I |ψ2s(~k)| . N2s−2
(1) N2

(3).

I We have

|R0,t(v)| . N2s−2
(1) N2

(3)

∫ 2π

0

∫
T2

e it∆f1 · e it∆f2e it∆f3 · e it∆f4dtdx ,

where f̂j(kj) = |vkj |.
I The space-time integral can be treated using the bilinear Strichartz

estimate. Due to the unavoidable loss N0+
(3) , we have

|R0,t(v)| . ‖PN(1)
v‖Hs−1‖PN(2)

v‖Hs−1‖PN(3)
v‖H2+‖PN(4)

v‖L2 .

I No matter how large s is, the above estimate is not enough for our
need, as v ∈ H(s−1)− almost surely. Nevertheless, we are ε-close to
what we expect (for s large).



Exploiting the random oscillation
By Method II, what we are allowed reduce the estimate to t = 0 and
average on the support of the measure. So we have access to the
probability toolbox: Wiener chaos estimate: l−linear Gaussian sum:

Tl :=
∑

k1,··· ,kl

ck1,··· ,kl g
±
k1

(ω) · · · g±kl (ω),

for any p ≥ 2,

‖Tl‖Lp
ω
≤ Cp

l
2 ‖Tl‖L2

ω
.

I The pairing contributions (k1 = k2, k3 = k4), (k1 = k4, k2 = k3) in
R0,t(v) disappear by taking the imaginary part, it is reduced to
estimate

p2
∥∥∥ ∑

k1−k2+k3−k4=0,
k2 6=k1,k3

Φ(~k)=0

ψ2s(~k)1|kj |∼Nj

gk1 (ω)g k2
(ω)gk3 (ω)g k4

(ω)

〈k1〉s〈k2〉s〈k3〉s〈k4〉s
∥∥∥
L2
ω

I Consider the worst case, say N1 ∼ N2 � N3 + N4 = O(1), the above
quantity can be crudely bounded by p2N2s−2

(1) · N−2s+1
(1) = p2N−1

(1) .
I By interpolating with the deterministic bound in the last slide, we

conclude that ‖ImR0,t(v)|t=0‖Lp
ω
≤ Cp.



I The treatment for N0,t(v) follows from the similar analysis +

resonance decomposition according to the value of Φ(~k).

I However, the estimate for the second generations R1,j,t(v), j = 1, 2
requires another algebraic cancellation.

I The reason is that in the high-high-low-low-low-low regime, the
most problematic contribution is the paring of two dominant
frequencies living in different generations. These types of pairing
prevent us to gain from the Winer chaos.

For example, in R1,1,t(v), there are two types of pairings:

r r′

l′′

n0 l′

Paring the leaves l′, l′′

r r′

l′′

n0 l′

Paring the leaves l′, l′′
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Key cancellation (Sequel)
Written in formula, these two pairing configurations are:

S1,1,1(v) :=4
∑
k1 6=k2

|vk2 |2
∑

|k3|+|k4�|k1|,|k2|
|p2|+|p3|�|k1|,|k2|

k3−k4=k2−k1
p2−p3=k2−k1

ψ2s(~k)

Φ(~k)
e−it(|k3|2−|k4|2+|p2|2−|p3|2)vk3 vk4 vp2 vp3 ,

(1)

S1,1,2(v) :=4
∑
k1,k3

|vk3 |2
∑

|k2|+|k4|�|k1|,|k3|
|p1|+|p3|�|k1|,|k3|

p1+p3=k1+k3
k2+k4=k1+k3

ψ2s(~k)

Φ(~k)
e it(|k2|2+|k4|2−|p1|2−|p3|2)vk2 vk4 vp1 vp3 .

(2)

To understand the hidden cancellation, for S1,1,1(v), one can think about
the sum is taken over |k3|, |k4|, |p2|, |p3| = O(1), then

ψ2s(~k)

Φ(~k)
≈ |k1|2s − |k2|2s

|k1|2 − |k2|2
,

then the second sum in the definition of S1,1,1 is completely decoupled as
| · · · |2 and we deduce that S1,1,1 is almost real.



Final remarks

I In work in progress with Y. Deng and N. Tzvetkov for the 3D NLS
as well.

I For the moment, we do not know how much regularity we need to
ensure the quasi-invariance property, especially in situations where
we only have probabilistic well-posedness for the flow.

I What can we say about the Radon-Nikodym density? More
philosophically, is there any link to the energy cascade phenomenon?



Thank you for your attention !




