Symmetry Breaking for Ground States of Biharmonic Nonlinear Schrödinger Equations

Tobias Weth (Goethe University Frankfurt)

CY Days in Nonlinear Analysis, March 28, 2022
Joint work with

Enno Lenzmann (Universität Basel)

Starting point: Semilinear stationary Schrödinger equations

Starting point: Semilinear stationary Schrödinger equations

The superlinear stationary nonlinear Schrödinger equation

$$
\text { (NLS) } \quad-\Delta u+\lambda u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N}, \quad \quad p>2, \quad \lambda>0
$$

is one of the most extensively studied objects in nonlinear analysis.

Starting point: Semilinear stationary Schrödinger equations

The superlinear stationary nonlinear Schrödinger equation
(NLS) $\quad-\Delta u+\lambda u=|u|^{p-2} u \quad$ in $\mathbb{R}^{N}, \quad \quad p>2, \quad \lambda>0$
is one of the most extensively studied objects in nonlinear analysis.

Solutions of (NLS) correspond, via the ansatz $\psi(t, x)=e^{i \lambda t} u(x)$, to standing wave solutions of the time-dependent semilinear Schrödinger equation

$$
-i \frac{\partial \psi}{\partial t}(t, x)-\Delta \psi(t, x)=|\psi(t, x)|^{p-2} \psi(t, x)
$$

Starting point: Semilinear stationary Schrödinger equations

The superlinear stationary nonlinear Schrödinger equation

$$
\begin{equation*}
-\Delta u+\lambda u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N} \tag{NLS}
\end{equation*}
$$

$$
p>2, \quad \lambda>0
$$

is one of the most extensively studied objects in nonlinear analysis.

Solutions of (NLS) correspond, via the ansatz $\psi(t, x)=e^{i \lambda t} u(x)$, to standing wave solutions of the time-dependent semilinear Schrödinger equation

$$
-i \frac{\partial \psi}{\partial t}(t, x)-\Delta \psi(t, x)=|\psi(t, x)|^{p-2} \psi(t, x)
$$

In the subcritical case $p<\left[\frac{2 N}{N-2}\right]_{+}$, the stationary equation (NLS) has a variational structure w.r.t. the energy functional

$$
E: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}, \quad E(u):=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+\lambda|u|^{2}\right) d x-\frac{1}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x
$$

Starting point: Semilinear stationary Schrödinger equations

$$
\begin{array}{rrl}
\text { (NLS) } & -\Delta u+\lambda u=|u|^{p-2} u & \text { in } \mathbb{R}^{N} \\
E: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}, & E(u):=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+\lambda|u|^{2}\right) d x-\frac{1}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x .
\end{array}
$$

Starting point: Semilinear stationary Schrödinger equations

$$
\begin{aligned}
(\mathrm{NLS}) & -\Delta u+\lambda u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N} \\
E: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}, & E(u):=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+\lambda|u|^{2}\right) d x-\frac{1}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x .
\end{aligned}
$$

Of particular importance, both for the stationary and the time-dependent problem, are nontrivial solutions in $H^{1}\left(\mathbb{R}^{N}\right)$ with least possible energy.

These solutions are called ground state solutions.

Starting point: Semilinear stationary Schrödinger equations

$$
\begin{aligned}
\text { (NLS) } & -\Delta u+\lambda u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N} \\
E: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}, & E(u):=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+\lambda|u|^{2}\right) d x-\frac{1}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x .
\end{aligned}
$$

Of particular importance, both for the stationary and the time-dependent problem, are nontrivial solutions in $H^{1}\left(\mathbb{R}^{N}\right)$ with least possible energy.

These solutions are called ground state solutions.
Up to a multiplicative constant, ground state solutions correspond to minimizers of the Sobolev quotient

$$
u \mapsto \frac{\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+\lambda|u|^{2}\right) d x}{\|u\|_{p}^{2}}
$$

Starting point: Semilinear stationary Schrödinger equations

$$
\begin{array}{rr}
(\mathrm{NLS}) & -\Delta u+\lambda u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N} \\
E: H^{1}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}, & E(u):=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+\lambda|u|^{2}\right) d x-\frac{1}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x .
\end{array}
$$

Of particular importance, both for the stationary and the time-dependent problem, are nontrivial solutions in $H^{1}\left(\mathbb{R}^{N}\right)$ with least possible energy.

These solutions are called ground state solutions.
Up to a multiplicative constant, ground state solutions correspond to minimizers of the Sobolev quotient

$$
u \mapsto \frac{\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+\lambda|u|^{2}\right) d x}{\|u\|_{p}^{2}}
$$

Classical result (Strauss 77, Gidas-Ni-Nirenberg 79,Kwong 89): If $2<p<\left[\frac{2 N}{N-2}\right]_{+}$, then (NLS) admits a ground state solution which is unique, positive and radially symmetric up to a constant phase factor $e^{i \tau}$ and translations.

Important features of second order elliptic PDE
(NLS) $\quad-\Delta u+\lambda u=|u|^{p-2} u \quad$ in \mathbb{R}^{N}

Important features of second order elliptic PDE

$$
\text { (NLS) } \quad-\Delta u+\lambda u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N}
$$

I. Schwarz symmetrization $u \mapsto u^{*}$ preserves L^{r}-norms, $1 \leq r \leq \infty$ and satisfies

$$
\int_{\mathbb{R}^{N}}\left|\nabla u^{*}\right|^{2} d x \leq \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x \quad \text { (Pólya-Szegö inequality) }
$$

so it decreases the Sobolev quotient:

$$
\frac{\int_{\mathbb{R}^{N}}\left(\left|\nabla u^{*}\right|^{2}+\lambda\left|u^{*}\right|^{2}\right) d x}{\left\|u^{*}\right\|_{p}^{2}} \leq \frac{\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+\lambda|u|^{2}\right) d x}{\|u\|_{p}^{2}}
$$

Hence one may look for minimizers in the space $H_{r a d}^{1}\left(\mathbb{R}^{N}\right)$.

Important features of second order elliptic PDE

$$
\text { (NLS) } \quad-\Delta u+\lambda u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N}
$$

I. Schwarz symmetrization $u \mapsto u^{*}$ preserves L^{r}-norms, $1 \leq r \leq \infty$ and satisfies

$$
\int_{\mathbb{R}^{N}}\left|\nabla u^{*}\right|^{2} d x \leq \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x \quad \text { (Pólya-Szegö inequality) }
$$

so it decreases the Sobolev quotient:

$$
\frac{\int_{\mathbb{R}^{N}}\left(\left|\nabla u^{*}\right|^{2}+\lambda\left|u^{*}\right|^{2}\right) d x}{\left\|u^{*}\right\|_{p}^{2}} \leq \frac{\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+\lambda|u|^{2}\right) d x}{\|u\|_{p}^{2}}
$$

Hence one may look for minimizers in the space $H_{r a d}^{1}\left(\mathbb{R}^{N}\right)$.
II. Maximum principles allow to prove radial symmetry of positive solutions to (NLS) up to translation via the Moving Plane Method.

Important features of second order elliptic PDE

$$
\text { (NLS) } \quad-\Delta u+\lambda u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N}
$$

I. Schwarz symmetrization $u \mapsto u^{*}$ preserves L^{r}-norms, $1 \leq r \leq \infty$ and satisfies

$$
\int_{\mathbb{R}^{N}}\left|\nabla u^{*}\right|^{2} d x \leq \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x \quad \text { (Pólya-Szegö inequality) }
$$

so it decreases the Sobolev quotient:

$$
\frac{\int_{\mathbb{R}^{N}}\left(\left|\nabla u^{*}\right|^{2}+\lambda\left|u^{*}\right|^{2}\right) d x}{\left\|u^{*}\right\|_{p}^{2}} \leq \frac{\int_{\mathbb{R}^{N}}\left(|\nabla u|^{2}+\lambda|u|^{2}\right) d x}{\|u\|_{p}^{2}}
$$

Hence one may look for minimizers in the space $H_{\text {rad }}^{1}\left(\mathbb{R}^{N}\right)$.
II. Maximum principles allow to prove radial symmetry of positive solutions to (NLS) up to translation via the Moving Plane Method.
I. and II. are not available (in general) for higher order equations.

Biharmonic NLS

Biharmonic NLS

The biharmonic nonlinear Schrödinger equation

$$
\text { (BNLS) } \quad \Delta^{2} u+2 a \Delta u+b u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N}, \quad a, b \in \mathbb{R}
$$

is a fourth-order analogue of NLS.

Biharmonic NLS

The biharmonic nonlinear Schrödinger equation

$$
\text { (BNLS) } \quad \Delta^{2} u+2 a \Delta u+b u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N}, \quad a, b \in \mathbb{R}
$$

is a fourth-order analogue of NLS.
It has attracted growing attention recently partly due to the following reasons:

- To model stabilizing and self-focusing effects in the mass-supercritical regime for the NLS (Karpman \& Shagalov 2000)
- Fourth-order dispersion terms are considered as corrections to classical approximations in nonlinear optics (Fibich, Ilan \& Papanicolaou 2002)

Biharmonic NLS

The biharmonic nonlinear Schrödinger equation
$\Delta^{2} u+2 a \Delta u+b u=|u|^{p-2} u \quad$ in \mathbb{R}^{N}, $a, b \in \mathbb{R}$,
is a fourth-order analogue of NLS.
It has attracted growing attention recently partly due to the following reasons:

- To model stabilizing and self-focusing effects in the mass-supercritical regime for the NLS (Karpman \& Shagalov 2000)
- Fourth-order dispersion terms are considered as corrections to classical approximations in nonlinear optics (Fibich, Ilan \& Papanicolaou 2002)

In the subcritical case where

$$
2<p<2^{*}:=\left[\frac{2 N}{N-4}\right]_{+},
$$

(BNLS) has a variational structure w.r.t. the energy functional

$$
u \mapsto E_{a, b}(u)=\frac{1}{2} \underbrace{\int_{\mathbb{R}^{N}}\left(|\Delta u|^{2}-2 a|\nabla u|^{2}+b|u|^{2}\right) d x}_{q_{a, b}(u)}-\frac{1}{p}\|u\|_{p}^{p}
$$

Biharmonic NLS

Biharmonic NLS

Since

$$
\mathbf{q}_{a, b}(u)=\int_{\mathbb{R}^{N}}\left[\left(|\xi|^{2}-a\right)^{2}+b-a^{2}\right]|\hat{u}(\xi)|^{2} d \xi
$$

the quadratic form $\mathrm{q}_{a, b}$ is positive definite on $H^{2}\left(\mathbb{R}^{N}\right)$ iff

$$
\text { (PD) } \quad b>a^{2} \quad \text { or } \quad 0<b \leq a^{2} \quad \text { and } \quad a \leq 0 .
$$

Biharmonic NLS

Since

$$
\mathbf{q}_{a, b}(u)=\int_{\mathbb{R}^{N}}\left[\left(|\xi|^{2}-a\right)^{2}+b-a^{2}\right]|\hat{u}(\xi)|^{2} d \xi
$$

the quadratic form $\mathrm{q}_{a, b}$ is positive definite on $H^{2}\left(\mathbb{R}^{N}\right)$ iff

$$
\text { (PD) } \quad b>a^{2} \quad \text { or } \quad 0<b \leq a^{2} \quad \text { and } \quad a \leq 0 .
$$

In this range of parameters, we have, by Sobolev embeddings,

$$
R_{a, b}(p):=\inf _{u \in H^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathrm{q}_{a, b}(u)}{\|u\|_{p}^{2}}>0 \quad \text { if } 2<p<2^{*} .
$$

Biharmonic NLS

Since

$$
\mathbf{q}_{a, b}(u)=\int_{\mathbb{R}^{N}}\left[\left(|\xi|^{2}-a\right)^{2}+b-a^{2}\right]|\hat{u}(\xi)|^{2} d \xi
$$

the quadratic form $\mathrm{q}_{a, b}$ is positive definite on $H^{2}\left(\mathbb{R}^{N}\right)$ iff

$$
\text { (PD) } \quad b>a^{2} \quad \text { or } \quad 0<b \leq a^{2} \quad \text { and } \quad a \leq 0 .
$$

In this range of parameters, we have, by Sobolev embeddings,

$$
R_{a, b}(p):=\inf _{u \in H^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathbf{q}_{a, b}(u)}{\|u\|_{p}^{2}}>0 \quad \text { if } 2<p<2^{*}
$$

A classical analysis of compactness up to translations (based on Lions' Lemma and the Brezis-Lieb Lemma) leads to the following

Theorem: Suppose $N \geq 1,2<p<2^{*}$, and that (PD) holds.
Then $R_{a, b}(p)$ is attained by a (ground state) solution of (BNLS).
Moreover, every ground state solution is real-valued up to a phase factor $e^{i \tau}$.

Biharmonic NLS

Since

$$
\mathbf{q}_{a, b}(u)=\int_{\mathbb{R}^{N}}\left[\left(|\xi|^{2}-a\right)^{2}+b-a^{2}\right]|\hat{u}(\xi)|^{2} d \xi
$$

the quadratic form $\mathrm{q}_{a, b}$ is positive definite on $H^{2}\left(\mathbb{R}^{N}\right)$ iff

$$
\text { (PD) } \quad b>a^{2} \quad \text { or } \quad 0<b \leq a^{2} \quad \text { and } \quad a \leq 0 .
$$

In this range of parameters, we have, by Sobolev embeddings,

$$
R_{a, b}(p):=\inf _{u \in H^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathbf{q}_{a, b}(u)}{\|u\|_{p}^{2}}>0 \quad \text { if } 2<p<2^{*}
$$

A classical analysis of compactness up to translations (based on Lions' Lemma and the Brezis-Lieb Lemma) leads to the following

Theorem: Suppose $N \geq 1,2<p<2^{*}$, and that (PD) holds.
Then $R_{a, b}(p)$ is attained by a (ground state) solution of (BNLS).
Moreover, every ground state solution is real-valued up to a phase factor $e^{i \tau}$.
Shape and symmetry of ground state solutions?

1. Symmetry based on cooperativity conditions
2. Symmetry based on cooperativity conditions
(BNLS)

$$
\Delta^{2} u+2 a \Delta u+b u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N},
$$

1. Symmetry based on cooperativity conditions

$$
\begin{equation*}
\Delta^{2} u+2 a \Delta u+b u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N} \tag{BNLS}
\end{equation*}
$$

We first consider the cooperativity condition

$$
(C C) \quad a<0 \quad \text { and } \quad 0<b<a^{2}
$$

Theorem (Bonheure, Casteras, Moreira dos Santos \& Nascimento 2018) If $(C C)$ holds, then every ground state solution of (BNLS) is positive up to a phase factor $e^{i \tau}$ and radially symmetric up to translations.

1. Symmetry based on cooperativity conditions

$$
\begin{equation*}
\Delta^{2} u+2 a \Delta u+b u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N} \tag{BNLS}
\end{equation*}
$$

We first consider the cooperativity condition

$$
(C C) \quad a<0 \quad \text { and } \quad 0<b<a^{2}
$$

Theorem (Bonheure, Casteras, Moreira dos Santos \& Nascimento 2018) If $(C C)$ holds, then every ground state solution of (BNLS) is positive up to a phase factor $e^{i \tau}$ and radially symmetric up to translations.

Key property: As a consequence of $(C C)$, the equation (BNLS) can be written as a cooperative system

$$
(C S) \quad\left(-\Delta+\lambda_{1}\right) u=v, \quad\left(-\Delta+\lambda_{2}\right) v=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N}
$$

with $\lambda_{1}, \lambda_{2}>0$ satisfying $\lambda_{1}+\lambda_{2}=-2 a$ and $\lambda_{1} \lambda_{2}=b$.
(Busca \& Sirakov 2000)
2. Symmetry based on Fourier rearrangement
2. Symmetry based on Fourier rearrangement
(BNLS)

$$
\Delta^{2} u+2 a \Delta u+b u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N},
$$

2. Symmetry based on Fourier rearrangement

$$
\text { (BNLS) } \quad \Delta^{2} u+2 a \Delta u+b u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N}
$$

Suppose now that

$$
(N C) \quad a<0 \quad \text { and } \quad b>a^{2}
$$

2. Symmetry based on Fourier rearrangement

$$
\text { (BNLS) } \quad \Delta^{2} u+2 a \Delta u+b u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N}
$$

Suppose now that

$$
(N C) \quad a<0 \quad \text { and } \quad b>a^{2}
$$

Theorem (Lenzmann \& Sok 2020)
If $p \in 2 \mathbb{N}$ and (NC) holds, then every ground state solution of (BNLS) is radially symmetric up to translations.
2. Symmetry based on Fourier rearrangement

$$
\begin{equation*}
\Delta^{2} u+2 a \Delta u+b u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N} \tag{BNLS}
\end{equation*}
$$

Suppose now that

$$
(N C) \quad a<0 \quad \text { and } \quad b>a^{2}
$$

Theorem (Lenzmann \& Sok 2020)
If $p \in 2 \mathbb{N}$ and (NC) holds, then every ground state solution of (BNLS) is radially symmetric up to translations.

The proof is based on the Fourier rearrangement methods developed by Boulenger \& Lenzmann (2018), Lenzmann \& Sok (2020).
2. Symmetry based on Fourier rearrangement

$$
\begin{equation*}
\Delta^{2} u+2 a \Delta u+b u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N} \tag{BNLS}
\end{equation*}
$$

Suppose now that

$$
(N C) \quad a<0 \quad \text { and } \quad b>a^{2}
$$

Theorem (Lenzmann \& Sok 2020)
If $p \in 2 \mathbb{N}$ and (NC) holds, then every ground state solution of (BNLS) is radially symmetric up to translations.
The proof is based on the Fourier rearrangement methods developed by Boulenger \& Lenzmann (2018), Lenzmann \& Sok (2020).
Key property: The Fourier symbol $\xi \mapsto|\xi|^{4}-2 a|\xi|^{2}+b$ is strictly increasing in $|\xi|$ if $a<0$.

$$
\begin{equation*}
\Delta^{2} u+2 a \Delta u+b u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N} \tag{BNLS}
\end{equation*}
$$

Suppose now that

$$
(N C) \quad a<0 \quad \text { and } \quad b>a^{2}
$$

Theorem (Lenzmann \& Sok 2020)
If $p \in 2 \mathbb{N}$ and (NC) holds, then every ground state solution of (BNLS) is radially symmetric up to translations.
The proof is based on the Fourier rearrangement methods developed by Boulenger \& Lenzmann (2018), Lenzmann \& Sok (2020).
Key property: The Fourier symbol $\xi \mapsto|\xi|^{4}-2 a|\xi|^{2}+b$ is strictly increasing in $|\xi|$ if $a<0$.
Condition (NC) also implies that radial solutions of (BNLS) are sign-changing (Bonheure, Casteras, Moreira dos Santos, Nascimento, 2018).

The mixed dispersion case

The mixed dispersion case
(BNLS)

$$
\Delta^{2} u+2 a \Delta u+b u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N}
$$

It remains to consider the case

$$
(M D) \quad a>0 \quad \text { and } \quad b>a^{2} .
$$

$$
\begin{equation*}
\Delta^{2} u+2 a \Delta u+b u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N} \tag{BNLS}
\end{equation*}
$$

It remains to consider the case

$$
(M D) \quad a>0 \quad \text { and } \quad b>a^{2} .
$$

Applying general Fourier symmetrization results of Benguria, Lenzmann \& Sok, we observe the following:
If $p \in 2 \mathbb{N}$, then, up to translations, ground state solutions u of (BNLS) are even functions, i.e., $u(-x)=u(x)$ for $x \in \mathbb{R}^{N}$.

$$
\begin{equation*}
\Delta^{2} u+2 a \Delta u+b u=|u|^{p-2} u \quad \text { in } \mathbb{R}^{N} \tag{BNLS}
\end{equation*}
$$

It remains to consider the case

$$
(M D) \quad a>0 \quad \text { and } \quad b>a^{2} .
$$

Applying general Fourier symmetrization results of Benguria, Lenzmann \& Sok, we observe the following:
If $p \in 2 \mathbb{N}$, then, up to translations, ground state solutions u of (BNLS) are even functions, i.e., $u(-x)=u(x)$ for $x \in \mathbb{R}^{N}$.

This is 'radial symmetry' if $N=1$.
Main question for the present talk: What about the case $N \geq 2$?

Main result on symmetry breaking

Main result on symmetry breaking
We consider the mixed dispersion case $a>0, b>a^{2}$ in the following.
By rescaling we may assume $a=1$.
With $\varepsilon:=b-1$, we may then rewrite (BNLS) as

$$
(B)_{\varepsilon} \quad \Delta^{2} u+2 \Delta u+(1+\varepsilon) u=|u|^{p-2} u, \quad u \in H^{2}\left(\mathbb{R}^{N}\right)
$$

Main result on symmetry breaking

We consider the mixed dispersion case $a>0, b>a^{2}$ in the following. By rescaling we may assume $a=1$. With $\varepsilon:=b-1$, we may then rewrite (BNLS) as

$$
(B)_{\varepsilon} \quad \Delta^{2} u+2 \Delta u+(1+\varepsilon) u=|u|^{p-2} u, \quad u \in H^{2}\left(\mathbb{R}^{N}\right)
$$

Theorem (Lenzmann, W. 21)
Let $N \geq 2$ and $2<p<2_{*}:=\frac{2(N+1)}{N-1}$.
Then there exists $\varepsilon_{0}=\varepsilon_{0}(p)>0$ with the property that every ground state solution $u \in H^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ of $\left(B_{\varepsilon}\right)$ is a nonradial function if $0<\varepsilon \leq \varepsilon_{0}$.

Main result on symmetry breaking

We consider the mixed dispersion case $a>0, b>a^{2}$ in the following. By rescaling we may assume $a=1$. With $\varepsilon:=b-1$, we may then rewrite (BNLS) as

$$
(B)_{\varepsilon} \quad \Delta^{2} u+2 \Delta u+(1+\varepsilon) u=|u|^{p-2} u, \quad u \in H^{2}\left(\mathbb{R}^{N}\right)
$$

Theorem (Lenzmann, W. 21)
Let $N \geq 2$ and $2<p<2_{*}:=\frac{2(N+1)}{N-1}$.
Then there exists $\varepsilon_{0}=\varepsilon_{0}(p)>0$ with the property that every ground state solution $u \in H^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ of $\left(B_{\varepsilon}\right)$ is a nonradial function if $0<\varepsilon \leq \varepsilon_{0}$.
Remarks

Main result on symmetry breaking

We consider the mixed dispersion case $a>0, b>a^{2}$ in the following. By rescaling we may assume $a=1$. With $\varepsilon:=b-1$, we may then rewrite (BNLS) as

$$
(B)_{\varepsilon} \quad \Delta^{2} u+2 \Delta u+(1+\varepsilon) u=|u|^{p-2} u, \quad u \in H^{2}\left(\mathbb{R}^{N}\right)
$$

Theorem (Lenzmann, W. 21)
Let $N \geq 2$ and $2<p<2_{*}:=\frac{2(N+1)}{N-1}$.
Then there exists $\varepsilon_{0}=\varepsilon_{0}(p)>0$ with the property that every ground state solution $u \in H^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ of $\left(B_{\varepsilon}\right)$ is a nonradial function if $0<\varepsilon \leq \varepsilon_{0}$.

Remarks

- Since $(B)_{\varepsilon}$ is invariant under rotations and translations, there is no direct indication of the presence and form of symmetry breaking.

Main result on symmetry breaking

We consider the mixed dispersion case $a>0, b>a^{2}$ in the following. By rescaling we may assume $a=1$. With $\varepsilon:=b-1$, we may then rewrite (BNLS) as

$$
(B)_{\varepsilon} \quad \Delta^{2} u+2 \Delta u+(1+\varepsilon) u=|u|^{p-2} u, \quad u \in H^{2}\left(\mathbb{R}^{N}\right)
$$

Theorem (Lenzmann, W. 21)
Let $N \geq 2$ and $2<p<2_{*}:=\frac{2(N+1)}{N-1}$.
Then there exists $\varepsilon_{0}=\varepsilon_{0}(p)>0$ with the property that every ground state solution $u \in H^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ of $\left(B_{\varepsilon}\right)$ is a nonradial function if $0<\varepsilon \leq \varepsilon_{0}$.
Remarks

- Since $(B)_{\varepsilon}$ is invariant under rotations and translations, there is no direct indication of the presence and form of symmetry breaking.
- In the case $N=2, p=4$, ground states are nonradial but even up to translations.

Main result on symmetry breaking

We consider the mixed dispersion case $a>0, b>a^{2}$ in the following. By rescaling we may assume $a=1$. With $\varepsilon:=b-1$, we may then rewrite (BNLS) as

$$
(B)_{\varepsilon} \quad \Delta^{2} u+2 \Delta u+(1+\varepsilon) u=|u|^{p-2} u, \quad u \in H^{2}\left(\mathbb{R}^{N}\right)
$$

Theorem (Lenzmann, W. 21)
Let $N \geq 2$ and $2<p<2_{*}:=\frac{2(N+1)}{N-1}$.
Then there exists $\varepsilon_{0}=\varepsilon_{0}(p)>0$ with the property that every ground state solution $u \in H^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ of $\left(B_{\varepsilon}\right)$ is a nonradial function if $0<\varepsilon \leq \varepsilon_{0}$. Remarks

- Since $(B)_{\varepsilon}$ is invariant under rotations and translations, there is no direct indication of the presence and form of symmetry breaking.
- In the case $N=2, p=4$, ground states are nonradial but even up to translations.
- Open question: Are ground states axially symmetric (up to translation)?

More symmetry breaking: Energy minimizers with fixed mass

More symmetry breaking: Energy minimizers with fixed mass
$(B)_{\varepsilon} \quad \Delta^{2} u+2 \Delta u+(1+\varepsilon) u=|u|^{p-2} u, \quad u \in H^{2}\left(\mathbb{R}^{N}\right)$.

Solutions of $(B)_{\varepsilon}$ also arises as the Euler-Lagrange equation associated with the minimization problem for the energy functional

$$
\tilde{E}: H \rightarrow \mathbb{R}, \quad \tilde{E}(u)=\int_{\mathbb{R}^{N}}|\Delta u|^{2} d x-2 \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x-\frac{2}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x
$$

restricted to the L^{2}-sphere

$$
S(m):=\left\{u \in H: \int_{\mathbb{R}^{N}}|u|^{2} d x=m\right\} . \quad \text { ('fixed mass constraint') }
$$

More symmetry breaking: Energy minimizers with fixed mass

$$
(B)_{\varepsilon} \quad \Delta^{2} u+2 \Delta u+(1+\varepsilon) u=|u|^{p-2} u, \quad u \in H^{2}\left(\mathbb{R}^{N}\right)
$$

Solutions of $(B)_{\varepsilon}$ also arises as the Euler-Lagrange equation associated with the minimization problem for the energy functional

$$
\tilde{E}: H \rightarrow \mathbb{R}, \quad \tilde{E}(u)=\int_{\mathbb{R}^{N}}|\Delta u|^{2} d x-2 \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x-\frac{2}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x
$$

restricted to the L^{2}-sphere

$$
S(m):=\left\{u \in H: \int_{\mathbb{R}^{N}}|u|^{2} d x=m\right\} .
$$

('fixed mass constraint')

From the dynamical point of view, this minimization problem is more natural then the one for the Sobolev quotient.
Both \tilde{E} and $S(m)$ are invariant under the corresponding biharmonic nonlinear Schrödinger flow.
\Longrightarrow Orbital stability properties of the set of minimizers of $\left.\tilde{E}\right|_{S(m)}$.

More symmetry breaking: Energy minimizers with fixed mass

More symmetry breaking: Energy minimizers with fixed mass

$$
\begin{gathered}
(B)_{\varepsilon} \quad \Delta^{2} u+2 \Delta u+(1+\varepsilon) u=|u|^{p-2} u, \quad u \in H^{2}\left(\mathbb{R}^{N}\right) . \\
\tilde{E}(u)=\int_{\mathbb{R}^{N}}|\Delta u|^{2} d x-2 \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x-\frac{2}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x \\
S(m):=\left\{u \in H: \int_{\mathbb{R}^{N}}|u|^{2} d x=m\right\} . \quad \text { ('fixed mass constraint') }
\end{gathered}
$$

More symmetry breaking: Energy minimizers with fixed mass
$(B)_{\varepsilon} \quad \Delta^{2} u+2 \Delta u+(1+\varepsilon) u=|u|^{p-2} u, \quad u \in H^{2}\left(\mathbb{R}^{N}\right)$.

$$
\tilde{E}(u)=\int_{\mathbb{R}^{N}}|\Delta u|^{2} d x-2 \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x-\frac{2}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x
$$

$S(m):=\left\{u \in H: \int_{\mathbb{R}^{N}}|u|^{2} d x=m\right\} . \quad$ ('fixed mass constraint')

The following result provides a link to ground state solutions of $(B)_{\varepsilon}$.
Theorem (Fernández, Jeanjean, Mandel \& Mariș, 2021)
For every $m>0$, the infimum of \tilde{E} on $S(m)$ is attained in the mass-subcritical case

$$
2<p<\max \left(4, \frac{2(N+5)}{N+1}\right), \quad p<2+\frac{8}{N}
$$

Moreover, every minimizer $u \in S(m)$ is a ground state solution of $(B)_{\varepsilon}$ for some $\varepsilon=\varepsilon(m)$, whereas $\varepsilon(m) \rightarrow 0^{+}$as $m \rightarrow 0$.

More symmetry breaking: Energy minimizers with fixed mass

$$
\begin{aligned}
(B)_{\varepsilon} \quad \Delta^{2} u+2 \Delta u+(1+\varepsilon) u=|u|^{p-2} u, \quad u \in H^{2}\left(\mathbb{R}^{N}\right) \\
\tilde{E}(u)=\int_{\mathbb{R}^{N}}|\Delta u|^{2} d x-2 \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x-\frac{2}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x
\end{aligned}
$$

$$
S(m):=\left\{u \in H: \int_{\mathbb{R}^{N}}|u|^{2} d x=m\right\} . \quad \text { ('fixed mass constraint') }
$$

More symmetry breaking: Energy minimizers with fixed mass
$(B)_{\varepsilon} \quad \Delta^{2} u+2 \Delta u+(1+\varepsilon) u=|u|^{p-2} u, \quad u \in H^{2}\left(\mathbb{R}^{N}\right)$.

$$
\tilde{E}(u)=\int_{\mathbb{R}^{N}}|\Delta u|^{2} d x-2 \int_{\mathbb{R}^{N}}|\nabla u|^{2} d x-\frac{2}{p} \int_{\mathbb{R}^{N}}|u|^{p} d x
$$

$S(m):=\left\{u \in H: \int_{\mathbb{R}^{N}}|u|^{2} d x=m\right\} . \quad$ ('fixed mass constraint')

Corollary (Lenzmann \& W.)
Let $N \geq 2$, and suppose that

$$
2<p<\frac{14}{3} \quad \text { if } N=2 \quad \text { and } \quad 2<p<2_{*} \quad \text { if } N \geq 3
$$

Then there exists $m_{0}=m_{0}(p)>0$ with the property that for every $0<m<m_{0}(p)$ all minimizers of \tilde{E} on $S(m)$ are nonradial functions.

Symmetry breaking for the Dirichlet problem in the unit ball

Symmetry breaking for the Dirichlet problem in the unit ball
Consider the associated Dirichlet problem in the unit ball $B=B_{1}(0)$:
(DP) $\begin{cases}\Delta^{2} u+2 a \Delta u+b u=|u|^{p-2} u & \text { in } B, \\ u=\partial_{\nu} u=0 & \text { on } \partial B .\end{cases}$

Symmetry breaking for the Dirichlet problem in the unit ball
Consider the associated Dirichlet problem in the unit ball $B=B_{1}(0)$:

Theorem (Lenzmann, W.)
Let $N \geq 2$ and $2<p<2_{*}$. Then, for $\varepsilon>0$ sufficiently small, there exists $a_{0}=a_{0}(\varepsilon, p)>0$ with the property that every ground state solution $u \in H$ of (DP) is a nonradial function if $a>a_{0}$ and $b=(1+\varepsilon) a^{2}$.

Symmetry breaking for the Dirichlet problem in the unit ball

Consider the associated Dirichlet problem in the unit ball $B=B_{1}(0)$:

$$
\begin{cases}\Delta^{2} u+2 a \Delta u+b u=|u|^{p-2} u & \text { in } B \tag{DP}\\ u=\partial_{\nu} u=0 & \text { on } \partial B\end{cases}
$$

Theorem (Lenzmann, W.)
Let $N \geq 2$ and $2<p<2_{*}$. Then, for $\varepsilon>0$ sufficiently small, there exists $a_{0}=a_{0}(\varepsilon, p)>0$ with the property that every ground state solution $u \in H$ of (DP) is a nonradial function if $a>a_{0}$ and $b=(1+\varepsilon) a^{2}$.

In contrast, we have
Theorem (Ferrero, Gazzola \& W. 2007)
If $a=b=0$, then real-valued ground state solutions of (DP) are positive, radially symmetric and unique (up to reflection $u \mapsto-u$).

Symmetry breaking for the Dirichlet problem in the unit ball

Consider the associated Dirichlet problem in the unit ball $B=B_{1}(0)$:

$$
\begin{cases}\Delta^{2} u+2 a \Delta u+b u=|u|^{p-2} u & \text { in } B \tag{DP}\\ u=\partial_{\nu} u=0 & \text { on } \partial B\end{cases}
$$

Theorem (Lenzmann, W.)
Let $N \geq 2$ and $2<p<2_{*}$. Then, for $\varepsilon>0$ sufficiently small, there exists $a_{0}=a_{0}(\varepsilon, p)>0$ with the property that every ground state solution $u \in H$ of (DP) is a nonradial function if $a>a_{0}$ and $b=(1+\varepsilon) a^{2}$.

In contrast, we have
Theorem (Ferrero, Gazzola \& W. 2007)
If $a=b=0$, then real-valued ground state solutions of (DP) are positive, radially symmetric and unique (up to reflection $u \mapsto-u$).

In fact, in this case, the radial symmetry and uniqueness extends to the class of all positive solutions of (DP) (Berchio-Gazzola \& W. 2008)

Symmetry breaking for the Dirichlet problem in the unit ball

Consider the associated Dirichlet problem in the unit ball $B=B_{1}(0)$:

$$
\begin{cases}\Delta^{2} u+2 a \Delta u+b u=|u|^{p-2} u & \text { in } B \tag{DP}\\ u=\partial_{\nu} u=0 & \text { on } \partial B\end{cases}
$$

Theorem (Lenzmann, W.)
Let $N \geq 2$ and $2<p<2_{*}$. Then, for $\varepsilon>0$ sufficiently small, there exists $a_{0}=a_{0}(\varepsilon, p)>0$ with the property that every ground state solution $u \in H$ of (DP) is a nonradial function if $a>a_{0}$ and $b=(1+\varepsilon) a^{2}$.

In contrast, we have
Theorem (Ferrero, Gazzola \& W. 2007)
If $a=b=0$, then real-valued ground state solutions of (DP) are positive, radially symmetric and unique (up to reflection $u \mapsto-u$).

In fact, in this case, the radial symmetry and uniqueness extends to the class of all positive solutions of (DP) (Berchio-Gazzola \& W. 2008)

Symmetry/symmetry breaking is largely open in the remaining cases.

Symmetry breaking for $\left(B_{\varepsilon}\right)$: Idea of the proof

$(B)_{\varepsilon} \quad \Delta^{2} u+2 \Delta u+(1+\varepsilon) u=|u|^{p-2} u, \quad u \in H^{2}\left(\mathbb{R}^{N}\right)$.

Symmetry breaking for $\left(B_{\varepsilon}\right)$: Idea of the proof
$(B)_{\varepsilon} \quad \Delta^{2} u+2 \Delta u+(1+\varepsilon) u=|u|^{p-2} u, \quad u \in H^{2}\left(\mathbb{R}^{N}\right)$.

Let $2<p<2^{*}:=\frac{2 N}{N-2}$. Moreover, let

$$
\mathbf{q}_{\varepsilon}(u)=\int_{\mathbb{R}^{N}}\left(|\Delta u|^{2}-2|\nabla u|^{2}+(1+\varepsilon)|u|^{2}\right) d x
$$

and let

$$
R_{\varepsilon}(p)=\inf _{u \in H^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathrm{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}}, \quad R_{\varepsilon}^{r a d}(p)=\inf _{u \in H_{r a d}^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathrm{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}},
$$

Symmetry breaking for $\left(B_{\varepsilon}\right)$: Idea of the proof
$(B)_{\varepsilon} \quad \Delta^{2} u+2 \Delta u+(1+\varepsilon) u=|u|^{p-2} u, \quad u \in H^{2}\left(\mathbb{R}^{N}\right)$.

Let $2<p<2^{*}:=\frac{2 N}{N-2}$. Moreover, let

$$
\mathbf{q}_{\varepsilon}(u)=\int_{\mathbb{R}^{N}}\left(|\Delta u|^{2}-2|\nabla u|^{2}+(1+\varepsilon)|u|^{2}\right) d x
$$

and let

$$
R_{\varepsilon}(p)=\inf _{u \in H^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathrm{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}}, \quad R_{\varepsilon}^{r a d}(p)=\inf _{u \in H_{r a d}^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathrm{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}},
$$

We shall show that, if $2<p<2_{*}=\frac{2(N+1)}{N-1}$,

$$
R_{\varepsilon}^{r a d}(p)>R_{\varepsilon}(p) \quad \text { for } 0<\varepsilon<\varepsilon_{0}(p)
$$

Symmetry breaking for $\left(B_{\varepsilon}\right)$: Idea of the proof
$(B)_{\varepsilon} \quad \Delta^{2} u+2 \Delta u+(1+\varepsilon) u=|u|^{p-2} u, \quad u \in H^{2}\left(\mathbb{R}^{N}\right)$.

Let $2<p<2^{*}:=\frac{2 N}{N-2}$. Moreover, let

$$
\mathbf{q}_{\varepsilon}(u)=\int_{\mathbb{R}^{N}}\left(|\Delta u|^{2}-2|\nabla u|^{2}+(1+\varepsilon)|u|^{2}\right) d x
$$

and let

$$
R_{\varepsilon}(p)=\inf _{u \in H^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathrm{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}}, \quad R_{\varepsilon}^{r a d}(p)=\inf _{u \in H_{r a d}^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathrm{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}},
$$

We shall show that, if $2<p<2_{*}=\frac{2(N+1)}{N-1}$,

$$
R_{\varepsilon}^{r a d}(p)>R_{\varepsilon}(p) \quad \text { for } 0<\varepsilon<\varepsilon_{0}(p)
$$

This shows that every ground state is a nonradial function for $0<\varepsilon<\varepsilon_{0}(p)$.

Symmetry breaking for $\left(B_{\varepsilon}\right)$: Idea of the proof
$(B)_{\varepsilon} \quad \Delta^{2} u+2 \Delta u+(1+\varepsilon) u=|u|^{p-2} u, \quad u \in H^{2}\left(\mathbb{R}^{N}\right)$.

Let $2<p<2^{*}:=\frac{2 N}{N-2}$. Moreover, let

$$
\mathbf{q}_{\varepsilon}(u)=\int_{\mathbb{R}^{N}}\left(|\Delta u|^{2}-2|\nabla u|^{2}+(1+\varepsilon)|u|^{2}\right) d x
$$

and let

$$
R_{\varepsilon}(p)=\inf _{u \in H^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathrm{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}}, \quad R_{\varepsilon}^{r a d}(p)=\inf _{u \in H_{r a d}^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathrm{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}},
$$

We shall show that, if $2<p<2_{*}=\frac{2(N+1)}{N-1}$,

$$
R_{\varepsilon}^{r a d}(p)>R_{\varepsilon}(p) \quad \text { for } 0<\varepsilon<\varepsilon_{0}(p)
$$

This shows that every ground state is a nonradial function for $0<\varepsilon<\varepsilon_{0}(p)$.
We need asymptotic expansions of $R_{\varepsilon}(p)$ and $R_{\varepsilon}^{r a d}(p)$ in the limit $\varepsilon \rightarrow 0^{+}$.

'Nonradial' expansions

$$
R_{\varepsilon}(p)=\inf _{u \in H^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathrm{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}}
$$

'Nonradial' expansions

$$
R_{\varepsilon}(p)=\inf _{u \in H^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathrm{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}}
$$

Let $N \geq 2$ and $2<p<2^{*}$. Moreover, let

$$
\tau_{N, p}:= \begin{cases}\frac{3}{4}+\frac{1}{2 p}-\frac{N}{2}\left(\frac{1}{2}-\frac{1}{p}\right) & \text { if } 2<p<2_{*} \\ \frac{1}{2} & \text { if } 2_{*}<p<2^{*}\end{cases}
$$

'Nonradial' expansions

$$
R_{\varepsilon}(p)=\inf _{u \in H^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathrm{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}}
$$

Let $N \geq 2$ and $2<p<2^{*}$. Moreover, let

$$
\tau_{N, p}:= \begin{cases}\frac{3}{4}+\frac{1}{2 p}-\frac{N}{2}\left(\frac{1}{2}-\frac{1}{p}\right) & \text { if } 2<p<2_{*} \\ \frac{1}{2} & \text { if } 2_{*}<p<2^{*}\end{cases}
$$

Theorem
We have $\quad R_{\varepsilon}(p)=O\left(\varepsilon^{\tau_{N, p}}\right) \quad$ as $\varepsilon \rightarrow 0^{+}$.

'Nonradial' expansions

$$
R_{\varepsilon}(p)=\inf _{u \in H^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathrm{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}}
$$

Let $N \geq 2$ and $2<p<2^{*}$. Moreover, let

$$
\tau_{N, p}:= \begin{cases}\frac{3}{4}+\frac{1}{2 p}-\frac{N}{2}\left(\frac{1}{2}-\frac{1}{p}\right) & \text { if } 2<p<2_{*} \\ \frac{1}{2} & \text { if } 2_{*}<p<2^{*}\end{cases}
$$

Theorem
We have $\quad R_{\varepsilon}(p)=O\left(\varepsilon^{\tau_{N, p}}\right) \quad$ as $\varepsilon \rightarrow 0^{+}$.
Here, the exponent $\tau_{N, p}$ is sharp in the sense that, for some constants $\mathrm{C}(p)>0$,

$$
R_{\varepsilon}(p) \geq \mathrm{C}(p) \varepsilon^{\tau_{N, p}}+o\left(\varepsilon^{\tau_{N, p}}\right) \quad \text { as } \varepsilon \rightarrow 0^{+}
$$

'Nonradial' expansions

$$
R_{\varepsilon}(p)=\inf _{u \in H^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathrm{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}}
$$

Let $N \geq 2$ and $2<p<2^{*}$. Moreover, let

$$
\tau_{N, p}:= \begin{cases}\frac{3}{4}+\frac{1}{2 p}-\frac{N}{2}\left(\frac{1}{2}-\frac{1}{p}\right) & \text { if } 2<p<2_{*} \\ \frac{1}{2} & \text { if } 2_{*}<p<2^{*}\end{cases}
$$

Theorem
We have $\quad R_{\varepsilon}(p)=O\left(\varepsilon^{\tau_{N, p}}\right) \quad$ as $\varepsilon \rightarrow 0^{+}$.
Here, the exponent $\tau_{N, p}$ is sharp in the sense that, for some constants $\mathrm{C}(p)>0$,

$$
R_{\varepsilon}(p) \geq \mathrm{C}(p) \varepsilon^{\tau_{N, p}}+o\left(\varepsilon^{\tau_{N, p}}\right) \quad \text { as } \varepsilon \rightarrow 0^{+}
$$

Moreover, if $2_{*} \leq p<2^{*}$, we have

$$
R_{\varepsilon}(p)=\mathrm{C}(p) \varepsilon^{\tau_{N, p}}+o\left(\varepsilon^{\tau_{N, p}}\right) \quad \text { if } 2_{*} \leq p<2^{*}
$$

'Nonradial' expansions: Special case $N=2$

$$
R_{\varepsilon}(p)=\inf _{u \in H^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathrm{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}}=O\left(\varepsilon^{\tau_{N, p}}\right) \quad \text { as } \varepsilon \rightarrow 0^{+}
$$

'Nonradial' expansions: Special case $N=2$

$$
R_{\varepsilon}(p)=\inf _{u \in H^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathrm{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}}=O\left(\varepsilon^{\tau_{N, p}}\right) \quad \text { as } \varepsilon \rightarrow 0^{+}
$$

In the case $N=2$ we have

$$
2_{*}=6, \quad 2^{*}=\infty, \quad \tau_{N, p}:= \begin{cases}\frac{1}{4}+\frac{3}{2 p}, & \text { if } 2<p<2_{*} ; \\ \frac{1}{2} & \text { if } 2_{*}<p<2^{*} .\end{cases}
$$

The borderline exponent $p=2_{*}$ hints at the Stein-Tomas inequality.

The Stein-Tomas inequality

The Stein-Tomas inequality

Theorem (Stein-Tomas Inequality, adjoint version)

The Stein-Tomas inequality

Theorem (Stein-Tomas Inequality, adjoint version)
Let $N \geq 2, \mathcal{S}:=S^{N-1}$ be the unit sphere in \mathbb{R}^{N}, and let $p \in\left[2_{*}, \infty\right)$. Then

$$
\mathrm{C}_{S T}(p):=\inf _{w \in L^{2}(\mathcal{S}) \backslash\{0\}} \frac{\|w\|_{L^{2}(\mathcal{S})}^{2}}{\|\check{w}\|_{p}^{2}}>0
$$

where, for $w \in L^{2}(\mathcal{S})$, the function $\check{w} \in L^{p}\left(\mathbb{R}^{N}\right)$ is a.e. given by

$$
\check{w}(x)=(2 \pi)^{-N / 2} \int_{\mathcal{S}} e^{i x \cdot \theta} w(\theta) d \sigma(\theta) .
$$

The Stein-Tomas inequality

Theorem (Stein-Tomas Inequality, adjoint version)
Let $N \geq 2, \mathcal{S}:=S^{N-1}$ be the unit sphere in \mathbb{R}^{N}, and let $p \in\left[2_{*}, \infty\right)$. Then

$$
\mathrm{C}_{S T}(p):=\inf _{w \in L^{2}(\mathcal{S}) \backslash\{0\}} \frac{\|w\|_{L^{2}(\mathcal{S})}^{2}}{\|\check{w}\|_{p}^{2}}>0
$$

where, for $w \in L^{2}(\mathcal{S})$, the function $\check{w} \in L^{p}\left(\mathbb{R}^{N}\right)$ is a.e. given by

$$
\check{w}(x)=(2 \pi)^{-N / 2} \int_{\mathcal{S}} e^{i x \cdot \theta} w(\theta) d \sigma(\theta)
$$

Consequently: $\quad\|\check{w}\|_{p} \leq \frac{1}{\sqrt{\mathrm{C}_{S T}(p)}}\|w\|_{L^{2}(\mathcal{S})} \quad$ for every $w \in L^{2}(\mathcal{S})$.

The Stein-Tomas inequality

Theorem (Stein-Tomas Inequality, adjoint version)
Let $N \geq 2, \mathcal{S}:=S^{N-1}$ be the unit sphere in \mathbb{R}^{N}, and let $p \in\left[2_{*}, \infty\right)$. Then

$$
\mathrm{C}_{S T}(p):=\inf _{w \in L^{2}(\mathcal{S}) \backslash\{0\}} \frac{\|w\|_{L^{2}(\mathcal{S})}^{2}}{\|\check{w}\|_{p}^{2}}>0
$$

where, for $w \in L^{2}(\mathcal{S})$, the function $\check{w} \in L^{p}\left(\mathbb{R}^{N}\right)$ is a. e. given by

$$
\check{w}(x)=(2 \pi)^{-N / 2} \int_{\mathcal{S}} e^{i x \cdot \theta} w(\theta) d \sigma(\theta)
$$

Consequently: $\quad\|\check{w}\|_{p} \leq \frac{1}{\sqrt{\mathrm{C}_{S T}(p)}}\|w\|_{L^{2}(\mathcal{S})} \quad$ for every $w \in L^{2}(\mathcal{S})$.
Remarks

1. The exponent bound $p \geq 2_{*}$ is sharp for this inequality (Knapp's example)

The Stein-Tomas inequality

Theorem (Stein-Tomas Inequality, adjoint version)
Let $N \geq 2, \mathcal{S}:=S^{N-1}$ be the unit sphere in \mathbb{R}^{N}, and let $p \in\left[2_{*}, \infty\right)$. Then

$$
\mathrm{C}_{S T}(p):=\inf _{w \in L^{2}(\mathcal{S}) \backslash\{0\}} \frac{\|w\|_{L^{2}(\mathcal{S})}^{2}}{\|\check{w}\|_{p}^{2}}>0
$$

where, for $w \in L^{2}(\mathcal{S})$, the function $\check{w} \in L^{p}\left(\mathbb{R}^{N}\right)$ is a. e. given by

$$
\check{w}(x)=(2 \pi)^{-N / 2} \int_{\mathcal{S}} e^{i x \cdot \theta} w(\theta) d \sigma(\theta)
$$

Consequently: $\quad\|\check{w}\|_{p} \leq \frac{1}{\sqrt{\mathrm{C}_{S T}(p)}}\|w\|_{L^{2}(\mathcal{S})} \quad$ for every $w \in L^{2}(\mathcal{S})$.
Remarks

1. The exponent bound $p \geq 2_{*}$ is sharp for this inequality (Knapp's example)
2. The constants $\mathrm{C}(p)$ in the expansion for $R_{\varepsilon}(p)$ are related to $\mathrm{C}_{S T}(p)$.

In particular: $\mathrm{C}(p)=\frac{2}{\pi} \mathrm{C}_{S T}(p) \quad$ if $2_{*} \leq p<2^{*}$.

Why is the Stein-Tomas inequality relevant here?

Why is the Stein-Tomas inequality relevant here?

Recall that

$$
R_{\varepsilon}(p)=\inf _{u \in H^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathrm{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}}
$$

with

$$
\mathbf{q}_{\varepsilon}(u)=\int_{\mathbb{R}^{N}}\left(|\Delta u|^{2}-2|\nabla u|^{2}+(1+\varepsilon)|u|^{2}\right) d x=\int_{\mathbb{R}^{N}}[\underbrace{\left.\left(|\xi|^{2}-1\right)^{2}+\varepsilon\right]}_{=: g_{\varepsilon}(|\xi|)}|\widehat{u}(\xi)|^{2} d \xi
$$

Why is the Stein-Tomas inequality relevant here?

Recall that

$$
R_{\varepsilon}(p)=\inf _{u \in H^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathrm{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}}
$$

with

$$
\mathbf{q}_{\varepsilon}(u)=\int_{\mathbb{R}^{N}}\left(|\Delta u|^{2}-2|\nabla u|^{2}+(1+\varepsilon)|u|^{2}\right) d x=\int_{\mathbb{R}^{N}}[\underbrace{\left.\left(|\xi|^{2}-1\right)^{2}+\varepsilon\right]}_{=: g_{\varepsilon}(|\xi|)}|\widehat{u}(\xi)|^{2} d \xi
$$

As $\varepsilon \rightarrow 0^{+}$, Fourier transforms of minimizers are expected to concentrate near the unit sphere $\mathcal{S}=\{|\xi|=1\}$

Difficult problem: Existence and shape of extremal functions for the ST inequality

Difficult problem: Existence and shape of extremal functions for the ST inequality

$$
\mathrm{C}_{S T}(p):=\inf _{w \in L^{2}(\mathcal{S}) \backslash\{0\}} \frac{\|w\|_{L^{2}(\mathcal{S})}^{2}}{\|\tilde{w}\|_{p}^{2}}>0 \quad \text { if } p \geq 2_{*}
$$

Difficult problem: Existence and shape of extremal functions for the ST inequality

$$
\mathrm{C}_{S T}(p):=\inf _{w \in L^{2}(\mathcal{S}) \backslash\{0\}} \frac{\|w\|_{L^{2}(\mathcal{S})}^{2}}{\|\tilde{w}\|_{p}^{2}}>0 \quad \text { if } p \geq 2_{*}
$$

Remark: The quotient is invariant under modulations $w \mapsto e^{i \xi(\cdot)} w, \xi \in \mathbb{R}^{N}$.

Difficult problem: Existence and shape of extremal functions for the ST inequality

$$
\mathrm{C}_{S T}(p):=\inf _{w \in L^{2}(\mathcal{S}) \backslash\{0\}} \frac{\|w\|_{L^{2}(\mathcal{S})}^{2}}{\|\tilde{w}\|_{p}^{2}}>0 \quad \text { if } p \geq 2_{*}
$$

Remark: The quotient is invariant under modulations $w \mapsto e^{i \xi(\cdot)} w, \xi \in \mathbb{R}^{N}$.

- Minimizers exist in the non-endpoint case $p>2_{*}$ (Fanelli, Vega \& Visciglia 2011);

Difficult problem: Existence and shape of extremal functions for the ST inequality

$$
\mathrm{C}_{S T}(p):=\inf _{w \in L^{2}(\mathcal{S}) \backslash\{0\}} \frac{\|w\|_{L^{2}(\mathcal{S})}^{2}}{\|\tilde{w}\|_{p}^{2}}>0 \quad \text { if } p \geq 2_{*}
$$

Remark: The quotient is invariant under modulations $w \mapsto e^{i \xi(\cdot)} w, \xi \in \mathbb{R}^{N}$.

- Minimizers exist in the non-endpoint case $p>2_{*}$ (Fanelli, Vega \& Visciglia 2011);
- Minimizers exist in the endpoint case $p=2_{*}$ if $N=2,3$ (Christ \& Shao 2012, Shao 2016);

Difficult problem: Existence and shape of extremal functions for the ST inequality

$$
\mathrm{C}_{S T}(p):=\inf _{w \in L^{2}(\mathcal{S}) \backslash\{0\}} \frac{\|w\|_{L^{2}(\mathcal{S})}^{2}}{\|\tilde{w}\|_{p}^{2}}>0 \quad \text { if } p \geq 2_{*}
$$

Remark: The quotient is invariant under modulations $w \mapsto e^{i \xi(\cdot)} w, \xi \in \mathbb{R}^{N}$.

- Minimizers exist in the non-endpoint case $p>2_{*}$ (Fanelli, Vega \& Visciglia 2011);
- Minimizers exist in the endpoint case $p=2_{*}$ if $N=2,3$ (Christ \& Shao 2012, Shao 2016);
- Existence of minimizers is open in the case $p=2_{*}, N \notin\{2,3\}$ (conditional result by Frank, Lieb \& Sabin 2016);

Difficult problem: Existence and shape of extremal functions for the ST inequality

$$
\mathrm{C}_{S T}(p):=\inf _{w \in L^{2}(\mathcal{S}) \backslash\{0\}} \frac{\|w\|_{L^{2}(\mathcal{S})}^{2}}{\|\tilde{w}\|_{p}^{2}}>0 \quad \text { if } p \geq 2_{*}
$$

Remark: The quotient is invariant under modulations $w \mapsto e^{i \xi(\cdot)} w, \xi \in \mathbb{R}^{N}$.

- Minimizers exist in the non-endpoint case $p>2_{*}$ (Fanelli, Vega \& Visciglia 2011);
- Minimizers exist in the endpoint case $p=2_{*}$ if $N=2,3$ (Christ \& Shao 2012, Shao 2016);
- Existence of minimizers is open in the case $p=2_{*}, N \notin\{2,3\}$ (conditional result by Frank, Lieb \& Sabin 2016);
- Up to modulations, minimizers are real-valued, even, and nonnegative if $p \in 2 \mathbb{N}$ (Oliveira e Silva \& Quilodran 2021);

Difficult problem: Existence and shape of extremal functions for the ST inequality

$$
\mathrm{C}_{S T}(p):=\inf _{w \in L^{2}(\mathcal{S}) \backslash\{0\}} \frac{\|w\|_{L^{2}(\mathcal{S})}^{2}}{\|\tilde{w}\|_{p}^{2}}>0 \quad \text { if } p \geq 2_{*}
$$

Remark: The quotient is invariant under modulations $w \mapsto e^{i \xi(\cdot)} w, \xi \in \mathbb{R}^{N}$.

- Minimizers exist in the non-endpoint case $p>2_{*}$ (Fanelli, Vega \& Visciglia 2011);
- Minimizers exist in the endpoint case $p=2_{*}$ if $N=2,3$ (Christ \& Shao 2012, Shao 2016);
- Existence of minimizers is open in the case $p=2_{*}, N \notin\{2,3\}$ (conditional result by Frank, Lieb \& Sabin 2016);
- Up to modulations, minimizers are real-valued, even, and nonnegative if $p \in 2 \mathbb{N}$ (Oliveira e Silva \& Quilodran 2021);
- Real-valued minimizers are constant if $3 \leq N \leq 7$ and $p \in 2 \mathbb{N}, p \geq 4$ (Foschi 2015, Carneiro \& Oliveira e Silva 2015, Oliveira e Silva \& Quilodran 2021)

Expansion of minimal Sobolev quotients: The case $2_{*} \leq p<2^{*}$.

Claim:

$$
R_{\varepsilon}(p)=\frac{2}{\pi} \mathrm{C}_{S T}(p) \sqrt{\varepsilon}+o(\sqrt{\varepsilon}) \quad \text { if } 2_{*} \leq p<2^{*}
$$

Expansion of minimal Sobolev quotients: The case $2_{*} \leq p<2^{*}$.

$$
\text { Claim: } \quad R_{\varepsilon}(p)=\frac{2}{\pi} \mathrm{C}_{S T}(p) \sqrt{\varepsilon}+o(\sqrt{\varepsilon}) \quad \text { if } 2_{*} \leq p<2^{*}
$$

Upper bound:

Expansion of minimal Sobolev quotients: The case $2_{*} \leq p<2^{*}$.

$$
\text { Claim: } \quad R_{\varepsilon}(p)=\frac{2}{\pi} \mathrm{C}_{S T}(p) \sqrt{\varepsilon}+o(\sqrt{\varepsilon}) \quad \text { if } 2_{*} \leq p<2^{*}
$$

Upper bound:
Choose an almost extremal function $w \in L^{2}(\mathcal{S})$ in the Stein-Thomas inequality and test the Sobolev quotient with
$u_{\varepsilon} \in H^{2}\left(\mathbb{R}^{N}\right) \quad$ defined by $\quad \hat{u}_{\varepsilon}(\xi):= \begin{cases}\frac{1}{g_{\varepsilon}(|\xi|)} w\left(\frac{\xi}{|\xi|}\right) & \text { if }| | \xi|-1| \leq \varepsilon^{\frac{1}{4}}, \\ 0 & \text { if }| | \xi|-1| \geq \varepsilon^{\frac{1}{4}} .\end{cases}$

Expansion of minimal Sobolev quotients: The case $2_{*} \leq p<2^{*}$.

Claim: $\quad R_{\varepsilon}(p)=\frac{2}{\pi} \mathrm{C}_{S T}(p) \sqrt{\varepsilon}+o(\sqrt{\varepsilon}) \quad$ if $2_{*} \leq p<2^{*}$.

Upper bound:
Choose an almost extremal function $w \in L^{2}(\mathcal{S})$ in the Stein-Thomas inequality and test the Sobolev quotient with
$u_{\varepsilon} \in H^{2}\left(\mathbb{R}^{N}\right) \quad$ defined by $\quad \hat{u}_{\varepsilon}(\xi):= \begin{cases}\frac{1}{g_{\varepsilon}(|\xi|)} w\left(\frac{\xi}{|\xi|}\right) & \text { if }| | \xi|-1| \leq \varepsilon^{\frac{1}{4}}, \\ 0 & \text { if }| | \xi|-1| \geq \varepsilon^{\frac{1}{4}} .\end{cases}$

Lower bound:
Let $u_{\varepsilon} \in H^{2}\left(\mathbb{R}^{N}\right)$ be an (L^{p}-normalized) optimizer for the Sobolev quotient $R_{\varepsilon}(p)$.

Expansion of minimal Sobolev quotients: The case $2_{*} \leq p<2^{*}$.

$$
\text { Claim: } \quad R_{\varepsilon}(p)=\frac{2}{\pi} \mathrm{C}_{S T}(p) \sqrt{\varepsilon}+o(\sqrt{\varepsilon}) \quad \text { if } 2_{*} \leq p<2^{*}
$$

Upper bound:
Choose an almost extremal function $w \in L^{2}(\mathcal{S})$ in the Stein-Thomas inequality and test the Sobolev quotient with
$u_{\varepsilon} \in H^{2}\left(\mathbb{R}^{N}\right) \quad$ defined by $\quad \hat{u}_{\varepsilon}(\xi):= \begin{cases}\frac{1}{g_{\varepsilon}(|\xi|)} w\left(\frac{\xi}{|\xi|}\right) & \text { if }| | \xi|-1| \leq \varepsilon^{\frac{1}{4}}, \\ 0 & \text { if }| | \xi|-1| \geq \varepsilon^{\frac{1}{4}} .\end{cases}$

Lower bound:
Let $u_{\varepsilon} \in H^{2}\left(\mathbb{R}^{N}\right)$ be an (L^{p}-normalized) optimizer for the Sobolev quotient $R_{\varepsilon}(p)$.

Prove that $\widehat{u}_{\varepsilon}$ concentrates near \mathcal{S}.

Expansion of minimal Sobolev quotients: The case $2_{*} \leq p<2^{*}$.

Claim: $\quad R_{\varepsilon}(p)=\frac{2}{\pi} \mathrm{C}_{S T}(p) \sqrt{\varepsilon}+o(\sqrt{\varepsilon}) \quad$ if $2_{*} \leq p<2^{*}$.

Upper bound:
Choose an almost extremal function $w \in L^{2}(\mathcal{S})$ in the Stein-Thomas inequality and test the Sobolev quotient with
$u_{\varepsilon} \in H^{2}\left(\mathbb{R}^{N}\right) \quad$ defined by $\quad \hat{u}_{\varepsilon}(\xi):= \begin{cases}\frac{1}{g_{\varepsilon}(|\xi|)} w\left(\frac{\xi}{|\xi|}\right) & \text { if }| | \xi|-1| \leq \varepsilon^{\frac{1}{4}}, \\ 0 & \text { if }| | \xi|-1| \geq \varepsilon^{\frac{1}{4}} .\end{cases}$

Lower bound:
Let $u_{\varepsilon} \in H^{2}\left(\mathbb{R}^{N}\right)$ be an (L^{p}-normalized) optimizer for the Sobolev quotient $R_{\varepsilon}(p)$.

Prove that $\widehat{u}_{\varepsilon}$ concentrates near \mathcal{S}.
Apply ST-inequality to the functions $\widehat{u}_{\varepsilon}(r(\cdot)) \in L^{2}(\mathcal{S}), 1-\delta \leq r \leq 1+\delta$.

Expansion of minimal Sobolev quotients: The case $2<p<2_{*}$

Expansion of minimal Sobolev quotients: The case $2<p<2_{*}$

Let $2<p<2_{*}$. A lower bound for $R_{\varepsilon}(p)$ is obtained by interpolation:

$$
\|u\|_{p} \leq\|u\|_{2}^{1-\alpha}\|u\|_{2_{*}}^{\alpha} \quad \text { for } u \in H^{2}\left(\mathbb{R}^{N}\right) \quad \text { with } \quad \alpha=(N+1)\left(\frac{1}{2}-\frac{1}{p}\right)
$$

Expansion of minimal Sobolev quotients: The case $2<p<2_{*}$

Let $2<p<2_{*}$. A lower bound for $R_{\varepsilon}(p)$ is obtained by interpolation:

$$
\|u\|_{p} \leq\|u\|_{2}^{1-\alpha}\|u\|_{2_{*}}^{\alpha} \quad \text { for } u \in H^{2}\left(\mathbb{R}^{N}\right) \quad \text { with } \quad \alpha=(N+1)\left(\frac{1}{2}-\frac{1}{p}\right)
$$

where

$$
\varepsilon\|u\|_{2}^{2}=\varepsilon \int_{\mathbb{R}^{N}}|\hat{u}(\xi)|^{2} d \xi \leq \int_{\mathbb{R}^{N}} g_{\varepsilon}(|\xi|)|\hat{u}(\xi)|^{2} d \xi=\mathbf{q}_{\varepsilon}(u) .
$$

Expansion of minimal Sobolev quotients: The case $2<p<2_{*}$

Let $2<p<2_{*}$. A lower bound for $R_{\varepsilon}(p)$ is obtained by interpolation:

$$
\|u\|_{p} \leq\|u\|_{2}^{1-\alpha}\|u\|_{2_{*}}^{\alpha} \quad \text { for } u \in H^{2}\left(\mathbb{R}^{N}\right) \quad \text { with } \quad \alpha=(N+1)\left(\frac{1}{2}-\frac{1}{p}\right)
$$

where

$$
\varepsilon\|u\|_{2}^{2}=\varepsilon \int_{\mathbb{R}^{N}}|\hat{u}(\xi)|^{2} d \xi \leq \int_{\mathbb{R}^{N}} g_{\varepsilon}(|\xi|)|\hat{u}(\xi)|^{2} d \xi=\mathbf{q}_{\varepsilon}(u)
$$

Consequently

$$
\frac{\mathbf{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}} \geq \frac{\mathbf{q}_{\varepsilon}(u)^{1-\alpha} \mathbf{q}_{\varepsilon}(u)^{\alpha}}{\left(\|u\|_{2}^{2}\right)^{1-\alpha}\left(\|u\|_{2_{*}}^{2}\right)^{\alpha}} \geq \varepsilon^{1-\alpha}\left(\frac{\mathbf{q}_{\varepsilon}(u)}{\|u\|_{2_{*}}^{2}}\right)^{\alpha}
$$

and hence

$$
\begin{aligned}
R_{\varepsilon}(p) \geq R_{\varepsilon}\left(2_{*}\right)^{\alpha} \varepsilon^{1-\alpha} & =\left(\frac{2}{\pi} \mathrm{C}_{S T}(p) \sqrt{\varepsilon}\right)^{\alpha} \varepsilon^{1-\alpha}+\text { h.o.t. } \\
& =\left(\frac{2}{\pi} \mathrm{C}_{S T}(p)\right)^{(N+1)\left(\frac{1}{2}-\frac{1}{p}\right)} \varepsilon^{\frac{3}{4}+\frac{1}{2 p}-\frac{N}{2}\left(\frac{1}{2}-\frac{1}{p}\right)}+\text { h.o.t.. }
\end{aligned}
$$

Expansion of minimal Sobolev quotients: The case $2<p<2_{*}$

Let $2<p<2_{*}$. A lower bound for $R_{\varepsilon}(p)$ is obtained by interpolation:

$$
\|u\|_{p} \leq\|u\|_{2}^{1-\alpha}\|u\|_{2_{*}}^{\alpha} \quad \text { for } u \in H^{2}\left(\mathbb{R}^{N}\right) \quad \text { with } \quad \alpha=(N+1)\left(\frac{1}{2}-\frac{1}{p}\right)
$$

where

$$
\varepsilon\|u\|_{2}^{2}=\varepsilon \int_{\mathbb{R}^{N}}|\hat{u}(\xi)|^{2} d \xi \leq \int_{\mathbb{R}^{N}} g_{\varepsilon}(|\xi|)|\hat{u}(\xi)|^{2} d \xi=\mathbf{q}_{\varepsilon}(u)
$$

Consequently

$$
\frac{\mathbf{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}} \geq \frac{\mathbf{q}_{\varepsilon}(u)^{1-\alpha} \mathbf{q}_{\varepsilon}(u)^{\alpha}}{\left(\|u\|_{2}^{2}\right)^{1-\alpha}\left(\|u\|_{2_{*}}^{2}\right)^{\alpha}} \geq \varepsilon^{1-\alpha}\left(\frac{\mathbf{q}_{\varepsilon}(u)}{\|u\|_{2_{*}}^{2}}\right)^{\alpha}
$$

and hence

$$
\begin{aligned}
R_{\varepsilon}(p) \geq R_{\varepsilon}\left(2_{*}\right)^{\alpha} \varepsilon^{1-\alpha} & =\left(\frac{2}{\pi} \mathrm{C}_{S T}(p) \sqrt{\varepsilon}\right)^{\alpha} \varepsilon^{1-\alpha}+\text { h.o.t. } \\
& =\left(\frac{2}{\pi} \mathrm{C}_{S T}(p)\right)^{(N+1)\left(\frac{1}{2}-\frac{1}{p}\right)} \varepsilon^{\frac{3}{4}+\frac{1}{2 p}-\frac{N}{2}\left(\frac{1}{2}-\frac{1}{p}\right)}+\text { h.o.t.. }
\end{aligned}
$$

Surprisingly, this is already the optimal exponent $\tau(N, p)=\frac{3}{4}+\frac{1}{2 p}-\frac{N}{2}\left(\frac{1}{2}-\frac{1}{p}\right)$.

Expansion of minimal Sobolev quotients: The case $2<p<2_{*}$

Expansion of minimal Sobolev quotients: The case $2<p<2_{*}$

For the upper bound, we first need to recall Knapp's example.

Expansion of minimal Sobolev quotients: The case $2<p<2_{*}$

For the upper bound, we first need to recall Knapp's example.
For $\delta>0$ small, consider the characteristic function

$$
w_{\delta}:=1_{\mathcal{C}_{\delta}} \in L^{2}(\mathcal{S}) \text { of the spherical cap } \mathcal{C}_{\delta}=\left\{\theta \in \mathcal{S}: 1-\theta_{N} \leq \delta\right\} .
$$

Expansion of minimal Sobolev quotients: The case $2<p<2_{*}$

For the upper bound, we first need to recall Knapp's example.
For $\delta>0$ small, consider the characteristic function

$$
w_{\delta}:=1_{\mathcal{C}_{\delta}} \in L^{2}(\mathcal{S}) \text { of the spherical cap } \mathcal{C}_{\delta}=\left\{\theta \in \mathcal{S}: 1-\theta_{N} \leq \delta\right\}
$$

If $p<2_{*}=\frac{2(N+1)}{N-1}$, these functions satisfy

$$
\frac{\left\|w_{\delta}\right\|_{L^{2}(\mathcal{S})}^{2}}{\left\|\check{w_{\delta}}\right\|_{p}^{2}}=O\left(\delta^{\frac{N+1}{p}-\frac{N-1}{2}}\right) \rightarrow 0 \quad \text { as } \delta \rightarrow 0
$$

Consequently, the exponent 2_{*} is sharp in the Stein-Tomas inequality.

Expansion of minimal Sobolev quotients: The case $2<p<2_{*}$

For the upper bound, we first need to recall Knapp's example.
For $\delta>0$ small, consider the characteristic function

$$
w_{\delta}:=1_{\mathcal{C}_{\delta}} \in L^{2}(\mathcal{S}) \text { of the spherical cap } \mathcal{C}_{\delta}=\left\{\theta \in \mathcal{S}: 1-\theta_{N} \leq \delta\right\}
$$

If $p<2_{*}=\frac{2(N+1)}{N-1}$, these functions satisfy

$$
\frac{\left\|w_{\delta}\right\|_{L^{2}(\mathcal{S})}^{2}}{\left\|\check{w_{\delta}}\right\|_{p}^{2}}=O\left(\delta^{\frac{N+1}{p}-\frac{N-1}{2}}\right) \rightarrow 0 \quad \text { as } \delta \rightarrow 0
$$

Consequently, the exponent 2_{*} is sharp in the Stein-Tomas inequality.
To see (25), we first note that

$$
\left\|w_{\delta}\right\|_{L^{2}(\mathcal{S})}^{2}=\left|\mathcal{C}_{\delta}\right|=O\left(\delta^{\frac{N-1}{2}}\right)
$$

Expansion of minimal Sobolev quotients: The case $2<p<2_{*}$

For the upper bound, we first need to recall Knapp's example.
For $\delta>0$ small, consider the characteristic function

$$
w_{\delta}:=1_{\mathcal{C}_{\delta}} \in L^{2}(\mathcal{S}) \text { of the spherical cap } \mathcal{C}_{\delta}=\left\{\theta \in \mathcal{S}: 1-\theta_{N} \leq \delta\right\}
$$

If $p<2_{*}=\frac{2(N+1)}{N-1}$, these functions satisfy

$$
\frac{\left\|w_{\delta}\right\|_{L^{2}(\mathcal{S})}^{2}}{\left\|\check{w_{\delta}}\right\|_{p}^{2}}=O\left(\delta^{\frac{N+1}{p}-\frac{N-1}{2}}\right) \rightarrow 0 \quad \text { as } \delta \rightarrow 0
$$

Consequently, the exponent 2_{*} is sharp in the Stein-Tomas inequality.
To see (25), we first note that

$$
\left\|w_{\delta}\right\|_{L^{2}(\mathcal{S})}^{2}=\left|\mathcal{C}_{\delta}\right|=O\left(\delta^{\frac{N-1}{2}}\right)
$$

Moreover, a pointwise estimate shows that, for suitable $c_{1}, c_{2}>0$,

$$
\left|\check{w_{\delta}}\right| \geq c_{1} \delta^{\frac{N-1}{2}} \quad \text { on } \quad M_{\delta}:=\left\{\left(x^{\prime}, x_{N}\right) \in \mathbb{R}^{N}:\left|x^{\prime}\right| \leq c_{2} \delta^{-\frac{1}{2}},\left|x_{N}\right| \leq c_{2} \delta^{-1}\right\}
$$

Expansion of minimal Sobolev quotients: The case $2<p<2_{*}$

$$
\begin{gathered}
w_{\delta}:=1_{\mathcal{C}_{\delta}}, \quad\left\|w_{\delta}\right\|_{L^{2}(\mathcal{S})}^{2}=\left|\mathcal{C}_{\delta}\right|=O\left(\delta^{\frac{N-1}{2}}\right) \\
\left|\check{w}_{\delta}\right| \geq c_{1} \delta^{\frac{N-1}{2}} \quad \text { on } \quad M_{\delta}:=\left\{\left(x^{\prime}, x_{N}\right) \in \mathbb{R}^{N}:\left|x^{\prime}\right| \leq c_{2} \delta^{-\frac{1}{2}},\left|x_{N}\right| \leq c_{2} \delta^{-1}\right\}
\end{gathered}
$$

Expansion of minimal Sobolev quotients: The case $2<p<2_{*}$

$$
\begin{gathered}
w_{\delta}:=1_{\mathcal{C}_{\delta}}, \quad\left\|w_{\delta}\right\|_{L^{2}(\mathcal{S})}^{2}=\left|\mathcal{C}_{\delta}\right|=O\left(\delta^{\frac{N-1}{2}}\right) \\
\left|\check{w}_{\delta}\right| \geq c_{1} \delta^{\frac{N-1}{2}} \quad \text { on } \quad M_{\delta}:=\left\{\left(x^{\prime}, x_{N}\right) \in \mathbb{R}^{N}:\left|x^{\prime}\right| \leq c_{2} \delta^{-\frac{1}{2}},\left|x_{N}\right| \leq c_{2} \delta^{-1}\right\}
\end{gathered}
$$

Expansion of minimal Sobolev quotients: The case $2<p<2_{*}$

$$
\begin{gathered}
w_{\delta}:=1_{\mathcal{C}_{\delta}}, \quad\left\|w_{\delta}\right\|_{L^{2}(\mathcal{S})}^{2}=\left|\mathcal{C}_{\delta}\right|=O\left(\delta^{\frac{N-1}{2}}\right) \\
\left|\check{w_{\delta}}\right| \geq c_{1} \delta^{\frac{N-1}{2}} \quad \text { on } \quad M_{\delta}:=\left\{\left(x^{\prime}, x_{N}\right) \in \mathbb{R}^{N}:\left|x^{\prime}\right| \leq c_{2} \delta^{-\frac{1}{2}},\left|x_{N}\right| \leq c_{2} \delta^{-1}\right\}
\end{gathered}
$$

Since

$$
\left|M_{\delta}\right| \sim \delta^{-\frac{N+1}{2}}
$$

the pointwise inequality gives

$$
\|\check{w} \delta\|_{p}^{2} \geq c_{3} \delta^{N-1-\frac{N+1}{p}}
$$

Expansion of minimal Sobolev quotients: The case $2<p<2_{*}$

$$
\begin{gathered}
w_{\delta}:=1_{\mathcal{C}_{\delta}}, \quad\left\|w_{\delta}\right\|_{L^{2}(\mathcal{S})}^{2}=\left|\mathcal{C}_{\delta}\right|=O\left(\delta^{\frac{N-1}{2}}\right) \\
\left|\check{w_{\delta}}\right| \geq c_{1} \delta^{\frac{N-1}{2}} \quad \text { on } \quad M_{\delta}:=\left\{\left(x^{\prime}, x_{N}\right) \in \mathbb{R}^{N}:\left|x^{\prime}\right| \leq c_{2} \delta^{-\frac{1}{2}},\left|x_{N}\right| \leq c_{2} \delta^{-1}\right\} .
\end{gathered}
$$

Since

$$
\left|M_{\delta}\right| \sim \delta^{-\frac{N+1}{2}}
$$

the pointwise inequality gives

$$
\|\check{w} \delta\|_{p}^{2} \geq c_{3} \delta^{N-1-\frac{N+1}{p}}
$$

Consequently,

$$
\frac{\left\|w_{\delta}\right\|_{L^{2}(\mathcal{S})}^{2}}{\left\|\check{w}_{\delta}\right\|_{p}^{2}}=O\left(\delta^{\frac{N+1}{p}-\frac{N-1}{2}}\right) \rightarrow 0 \quad \text { as } \delta \rightarrow 0
$$

as claimed.

Expansion of minimal energy quotients: The case $2<p<2 *$

Expansion of minimal energy quotients: The case $2<p<2_{*}$

Inspired by Knapp's example, we estimate $R_{\varepsilon}(p)$ with the ε-dependent test functions

$$
u_{\varepsilon} \in H^{2}\left(\mathbb{R}^{N}\right) \quad \text { defined by } \quad \hat{u}_{\varepsilon}(\xi):= \begin{cases}w_{\sqrt{\varepsilon}}\left(\frac{\xi}{|\xi|}\right) & \text { if }| | \xi|-1| \leq \sqrt{\varepsilon} \\ 0 & \text { if }| | \xi|-1| \geq \sqrt{\varepsilon}\end{cases}
$$

Expansion of minimal energy quotients: The case $2<p<2 *$

Inspired by Knapp's example, we estimate $R_{\varepsilon}(p)$ with the ε-dependent test functions

$$
u_{\varepsilon} \in H^{2}\left(\mathbb{R}^{N}\right) \quad \text { defined by } \quad \hat{u}_{\varepsilon}(\xi):= \begin{cases}w_{\sqrt{\varepsilon}}\left(\frac{\xi}{|\xi|}\right) & \text { if }| | \xi|-1| \leq \sqrt{\varepsilon} \\ 0 & \text { if }| | \xi|-1| \geq \sqrt{\varepsilon}\end{cases}
$$

Using the fact that the Fourier symbol g_{ε} has a nondegenerate minimum at 1 , we estimate

$$
\mathrm{q}_{\varepsilon}\left(u_{\varepsilon}\right)=O\left(\left|\mathcal{C}_{\sqrt{\varepsilon}}\right| \varepsilon^{\frac{3}{2}}\right)=O\left(\varepsilon^{\frac{3}{2}+\frac{N-1}{4}}\right)
$$

Expansion of minimal energy quotients: The case $2<p<2_{*}$

Inspired by Knapp's example, we estimate $R_{\varepsilon}(p)$ with the ε-dependent test functions

$$
u_{\varepsilon} \in H^{2}\left(\mathbb{R}^{N}\right) \quad \text { defined by } \quad \hat{u}_{\varepsilon}(\xi):= \begin{cases}w_{\sqrt{\varepsilon}}\left(\frac{\xi}{|\xi|}\right) & \text { if }| | \xi|-1| \leq \sqrt{\varepsilon} \\ 0 & \text { if }| | \xi|-1| \geq \sqrt{\varepsilon}\end{cases}
$$

Using the fact that the Fourier symbol g_{ε} has a nondegenerate minimum at 1 , we estimate

$$
\mathrm{q}_{\varepsilon}\left(u_{\varepsilon}\right)=O\left(\left|\mathcal{C}_{\sqrt{\varepsilon}}\right| \varepsilon^{\frac{3}{2}}\right)=O\left(\varepsilon^{\frac{3}{2}+\frac{N-1}{4}}\right)
$$

Moreover, by a somewhat more delicate estimate,

$$
\left\|u_{\varepsilon}\right\|_{p}^{2} \geq \kappa \varepsilon^{1+\frac{N-1}{2}-\frac{N+1}{2 p}}
$$

Expansion of minimal energy quotients: The case $2<p<2_{*}$

Inspired by Knapp's example, we estimate $R_{\varepsilon}(p)$ with the ε-dependent test functions

$$
u_{\varepsilon} \in H^{2}\left(\mathbb{R}^{N}\right) \quad \text { defined by } \quad \hat{u}_{\varepsilon}(\xi):= \begin{cases}w_{\sqrt{\varepsilon}}\left(\frac{\xi}{|\xi|}\right) & \text { if }| | \xi|-1| \leq \sqrt{\varepsilon} \\ 0 & \text { if }| | \xi|-1| \geq \sqrt{\varepsilon}\end{cases}
$$

Using the fact that the Fourier symbol g_{ε} has a nondegenerate minimum at 1 , we estimate

$$
\mathrm{q}_{\varepsilon}\left(u_{\varepsilon}\right)=O\left(\left|\mathcal{C}_{\sqrt{\varepsilon}}\right| \varepsilon^{\frac{3}{2}}\right)=O\left(\varepsilon^{\frac{3}{2}+\frac{N-1}{4}}\right)
$$

Moreover, by a somewhat more delicate estimate,

$$
\left\|u_{\varepsilon}\right\|_{p}^{2} \geq \kappa \varepsilon^{1+\frac{N-1}{2}-\frac{N+1}{2 p}}
$$

Consequently,

$$
\frac{\mathrm{q}\left(u_{\varepsilon}\right)}{\left\|u_{\varepsilon}\right\|_{p}^{2}}=O\left(\varepsilon^{\frac{3}{4}+\frac{1}{2 p}-\frac{N}{2}\left(\frac{1}{2}-\frac{1}{p}\right)}\right)=O\left(\varepsilon^{\tau(N, p)}\right) \quad \text { as } \varepsilon \rightarrow 0^{+} .
$$

Next step: Lower estimates for $R_{\varepsilon}^{\text {rad }}(p)$

Next step: Lower estimates for $R_{\varepsilon}^{\text {rad }}(p)$
What is different for radial functions?

Next step: Lower estimates for $R_{\varepsilon}^{\text {rad }}(p)$
What is different for radial functions?
To obtain a sufficient asymptotic lower bound for

$$
R_{\varepsilon}^{r a d}(p)=\inf _{u \in H_{r a d}^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathrm{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}},
$$

we recall the following
Trivial improvement of the ST-inequality for radial functions:

Next step: Lower estimates for $R_{\varepsilon}^{\text {rad }}(p)$
What is different for radial functions?
To obtain a sufficient asymptotic lower bound for

$$
R_{\varepsilon}^{r a d}(p)=\inf _{u \in H_{r a d}^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathrm{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}},
$$

we recall the following
Trivial improvement of the ST-inequality for radial functions:
We have

$$
1_{\mathcal{S}} \in L^{p}\left(\mathbb{R}^{N}\right) \quad \text { if } \quad p>2_{*}^{\text {rad }}:=\frac{2 N}{N-1}
$$

and thus

$$
\mathrm{C}_{S T}^{r a d}(p):=\frac{\left\|1_{\mathcal{S}}\right\|_{L^{2}(\mathcal{S})}^{2}}{\left\|1_{\mathcal{S}}\right\|_{p}^{2}}=\frac{\omega_{N-1}}{\left\|1_{\mathcal{S}}\right\|_{p}^{2}}>0
$$

Next step: Lower estimates for $R_{\varepsilon}^{\text {rad }}(p)$
What is different for radial functions?
To obtain a sufficient asymptotic lower bound for

$$
R_{\varepsilon}^{r a d}(p)=\inf _{u \in H_{r a d}^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathrm{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}}
$$

we recall the following
Trivial improvement of the ST-inequality for radial functions:
We have

$$
1_{\mathcal{S}} \in L^{p}\left(\mathbb{R}^{N}\right) \quad \text { if } \quad p>2_{*}^{\text {rad }}:=\frac{2 N}{N-1}
$$

and thus

$$
\mathrm{C}_{S T}^{r a d}(p):=\frac{\left\|1_{\mathcal{S}}\right\|_{L^{2}(\mathcal{S})}^{2}}{\left\|1_{\mathcal{S}}\right\|_{p}^{2}}=\frac{\omega_{N-1}}{\left\|\check{1_{\mathcal{S}}}\right\|_{p}^{2}}>0
$$

Indeed,

$$
\check{1_{\mathcal{S}}}(x)=C_{N}|x|^{-\frac{N-2}{2}} J_{\frac{N-2}{2}}(|x|) \quad \text { and thus } \quad\left|\check{1_{\mathcal{S}}}(x)\right| \leq \widetilde{C_{N}}(1+|x|)^{-\frac{N-1}{2}}
$$

Next step: Lower estimates for $R_{\varepsilon}^{\text {rad }}(p)$
What is different for radial functions?
To obtain a sufficient asymptotic lower bound for

$$
R_{\varepsilon}^{r a d}(p)=\inf _{u \in H_{r a d}^{2}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\mathrm{q}_{\varepsilon}(u)}{\|u\|_{p}^{2}},
$$

we recall the following
Trivial improvement of the ST-inequality for radial functions:
We have

$$
1_{\mathcal{S}} \in L^{p}\left(\mathbb{R}^{N}\right) \quad \text { if } \quad p>2_{*}^{\text {rad }}:=\frac{2 N}{N-1}
$$

and thus

$$
\mathrm{C}_{S T}^{r a d}(p):=\frac{\left\|1_{\mathcal{S}}\right\|_{L^{2}(\mathcal{S})}^{2}}{\left\|1_{\mathcal{S}}\right\|_{p}^{2}}=\frac{\omega_{N-1}}{\left\|\check{1_{\mathcal{S}}}\right\|_{p}^{2}}>0
$$

Indeed,

$$
\check{1_{\mathcal{S}}}(x)=C_{N}|x|^{-\frac{N-2}{2}} J_{\frac{N-2}{2}}(|x|) \quad \text { and thus } \quad\left|\check{1_{\mathcal{S}}}(x)\right| \leq \widetilde{C_{N}}(1+|x|)^{-\frac{N-1}{2}}
$$

For radial functions, we may repeat previous estimates with $\mathrm{C}_{S T}(p)$ replaced by $C_{S T}^{r a d}(p)$.

Lower estimates for $R_{\varepsilon}^{\text {rad }}(p)$

Lower estimates for $R_{\varepsilon}^{\text {rad }}(p)$

Proposition

(i) If $2_{*}^{\text {rad }}<p \leq 2^{*}$, we have

$$
R_{\varepsilon}^{r a d}(p) \geq \frac{2 \mathrm{C}_{S T}^{r a d}(p)}{\pi} \sqrt{\varepsilon}+o(\sqrt{\varepsilon}) \quad \text { as } \varepsilon \rightarrow 0^{+}
$$

Lower estimates for $R_{\varepsilon}^{\text {rad }}(p)$

Proposition

(i) If $2_{*}^{\text {rad }}<p \leq 2^{*}$, we have

$$
R_{\varepsilon}^{r a d}(p) \geq \frac{2 \mathrm{C}_{S T}^{r a d}(p)}{\pi} \sqrt{\varepsilon}+o(\sqrt{\varepsilon}) \quad \text { as } \varepsilon \rightarrow 0^{+}
$$

(ii) If $2<p \leq 2_{*}^{\text {rad }}$, then we have

$$
R_{\varepsilon}^{\text {rad }}(p) \geq C \varepsilon^{\beta}+o\left(\varepsilon^{\beta}\right) \quad \text { as } \varepsilon \rightarrow 0^{+}
$$

for every

$$
\beta \in \begin{cases}\left(1-N\left(\frac{1}{2}-\frac{1}{p}\right), \frac{1}{2}+\frac{1}{p}\right) & \text { in the case } N \leq 4 \\ \left(1-N\left(\frac{1}{2}-\frac{1}{p}\right), 1-\frac{N}{4}\left(\frac{1}{2}-\frac{1}{p}\right)\right) & \text { in the case } N \geq 5\end{cases}
$$

with a constant $C=C(N, p, \beta)>0$.

Lower estimates for $R_{\varepsilon}^{\text {rad }}(p)$
Proposition
(i) If $2_{*}^{\text {rad }}<p \leq 2^{*}$, we have

$$
R_{\varepsilon}^{r a d}(p) \geq \frac{2 \mathrm{C}_{S T}^{r a d}(p)}{\pi} \sqrt{\varepsilon}+o(\sqrt{\varepsilon}) \quad \text { as } \varepsilon \rightarrow 0^{+}
$$

(ii) If $2<p \leq 2_{*}^{\text {rad }}$, then we have

$$
R_{\varepsilon}^{\text {rad }}(p) \geq C \varepsilon^{\beta}+o\left(\varepsilon^{\beta}\right) \quad \text { as } \varepsilon \rightarrow 0^{+}
$$

for every

$$
\beta \in \begin{cases}\left(1-N\left(\frac{1}{2}-\frac{1}{p}\right), \frac{1}{2}+\frac{1}{p}\right) & \text { in the case } N \leq 4 \\ \left(1-N\left(\frac{1}{2}-\frac{1}{p}\right), 1-\frac{N}{4}\left(\frac{1}{2}-\frac{1}{p}\right)\right) & \text { in the case } N \geq 5\end{cases}
$$

with a constant $C=C(N, p, \beta)>0$.
Here, again, (ii) is obtained from (i) by interpolating with the inequality

$$
\frac{q_{\varepsilon}(u)}{\|u\|_{2}} \geq \varepsilon \quad \text { for all } u \in H^{2}\left(\mathbb{R}^{N}\right)
$$

End of the proof: Comparison of exponents

End of the proof: Comparison of exponents
Since

$$
\tau_{N, p}=\frac{3}{4}+\frac{1}{2 p}-\frac{N}{2}\left(\frac{1}{2}-\frac{1}{p}\right)> \begin{cases}\frac{1}{2} & \text { for } 2_{*}^{\text {rad }}<p<2_{*} \\ 1-N\left(\frac{1}{2}-\frac{1}{p}\right) & \text { for } 2<p \leq 2_{*}^{\text {rad }}\end{cases}
$$

we conclude that for $p \in\left(2,2_{*}\right)$ there exists $\varepsilon_{0}=\varepsilon_{0}(p)$ with

$$
R_{\varepsilon}^{r a d}(p)>R_{\varepsilon}(p) \quad \text { for } 0<\varepsilon<\varepsilon_{0}(p)
$$

End of the proof: Comparison of exponents
Since

$$
\tau_{N, p}=\frac{3}{4}+\frac{1}{2 p}-\frac{N}{2}\left(\frac{1}{2}-\frac{1}{p}\right)> \begin{cases}\frac{1}{2} & \text { for } 2_{*}^{\text {rad }}<p<2_{*} \\ 1-N\left(\frac{1}{2}-\frac{1}{p}\right) & \text { for } 2<p \leq 2_{*}^{\text {rad }}\end{cases}
$$

we conclude that for $p \in\left(2,2_{*}\right)$ there exists $\varepsilon_{0}=\varepsilon_{0}(p)$ with

$$
R_{\varepsilon}^{r a d}(p)>R_{\varepsilon}(p) \quad \text { for } 0<\varepsilon<\varepsilon_{0}(p)
$$

Hence every ground state solution of $\left(B_{\varepsilon}\right)$ is nonradial in this case.

Special case $N=2$: Recall that $2_{*}^{\text {rad }}=4$ and $2_{*}=6$.

Many thanks!

