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1

2

∫
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(
|∇u|2 + λ|u|2

)
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∫

RN

|u|pdx.

Of particular importance, both for the stationary and the time-dependent

problem, are nontrivial solutions in H1(RN ) with least possible energy.

These solutions are called ground state solutions.

Up to a multiplicative constant, ground state solutions correspond to

minimizers of the Sobolev quotient

u 7→
∫
RN

(
|∇u|2 + λ|u|2

)
dx

‖u‖2
p

Classical result (Strauss 77, Gidas-Ni-Nirenberg 79,Kwong 89):

If 2 < p <
[

2N
N−2

]
+

, then (NLS) admits a ground state solution which is

unique, positive and radially symmetric up to a constant phase factor eiτ and

translations.
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p

Hence one may look for minimizers in the space H1
rad(RN ).

II. Maximum principles allow to prove radial symmetry of positive solutions to

(NLS) up to translation via the Moving Plane Method.

I. and II. are not available (in general) for higher order equations.
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In the subcritical case where

2 < p < 2∗ :=
[ 2N

N − 4

]
+
,

(BNLS) has a variational structure w.r.t. the energy functional

u 7→ Ea,b(u) =
1

2

∫

RN

(
|∆u|2 − 2a|∇u|2 + b|u|2

)
dx

︸ ︷︷ ︸
qa,b(u)

−1

p
‖u‖p

p.
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Then Ra,b(p) is attained by a (ground state) solution of (BNLS).

Moreover, every ground state solution is real-valued up to a phase factor eiτ .

Shape and symmetry of ground state solutions?
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(BNLS) ∆2
u+ 2a∆u+ bu = |u|p−2

u in R
N ,

We first consider the cooperativity condition

(CC) a < 0 and 0 < b < a
2

Theorem (Bonheure,Casteras, Moreira dos Santos & Nascimento 2018)

If (CC) holds, then every ground state solution of (BNLS) is positive up to a

phase factor eiτ and radially symmetric up to translations.

Key property: As a consequence of (CC), the equation (BNLS) can be written

as a cooperative system

(CS) (−∆ + λ1)u = v, (−∆ + λ2)v = |u|p−2
u in R

N .

with λ1, λ2 > 0 satisfying λ1 + λ2 = −2a and λ1λ2 = b.

(Busca & Sirakov 2000)
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N ,

Suppose now that

(NC) a < 0 and b > a
2

Theorem (Lenzmann & Sok 2020)

If p ∈ 2N and (NC) holds, then every ground state solution of (BNLS) is

radially symmetric up to translations.

The proof is based on the Fourier rearrangement methods developed by

Boulenger & Lenzmann (2018), Lenzmann & Sok (2020).

Key property: The Fourier symbol ξ 7→ |ξ|4 − 2a|ξ|2 + b is strictly increasing in

|ξ| if a < 0.

Condition (NC) also implies that radial solutions of (BNLS) are sign-changing

(Bonheure,Casteras, Moreira dos Santos, Nascimento, 2018).
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(BNLS) ∆2
u+ 2a∆u+ bu = |u|p−2

u in R
N ,

It remains to consider the case

(MD) a > 0 and b > a
2
.

Applying general Fourier symmetrization results of Benguria, Lenzmann & Sok,

we observe the following:

If p ∈ 2N, then, up to translations, ground state solutions u of (BNLS) are

even functions, i.e., u(−x) = u(x) for x ∈ R
N .

This is ’radial symmetry’ if N = 1.

Main question for the present talk: What about the case N ≥ 2?
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We consider the mixed dispersion case a > 0, b > a2 in the following.

By rescaling we may assume a = 1.

With ε := b− 1, we may then rewrite (BNLS) as

(B)ε ∆2
u+ 2∆u+ (1 + ε)u = |u|p−2

u, u ∈ H
2(RN ).

Theorem (Lenzmann, W. 21)

Let N ≥ 2 and 2 < p < 2∗ := 2(N+1)
N−1

.

Then there exists ε0 = ε0(p) > 0 with the property that every ground state

solution u ∈ H2(RN ) \ {0} of (Bε) is a nonradial function if 0 < ε ≤ ε0.

Remarks

◮ Since (B)ε is invariant under rotations and translations, there is no direct

indication of the presence and form of symmetry breaking.

◮ In the case N = 2, p = 4, ground states are nonradial but even up to

translations.

◮ Open question: Are ground states axially symmetric (up to translation)?
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(B)ε ∆2u+ 2∆u+ (1 + ε)u = |u|p−2u, u ∈ H2(RN ).

Solutions of (B)ε also arises as the Euler-Lagrange equation associated with

the minimization problem for the energy functional

Ẽ : H → R, Ẽ(u) =

∫

RN

|∆u|2 dx− 2

∫

RN

|∇u|2 dx− 2

p

∫

RN

|u|p dx

restricted to the L2-sphere

S(m) :=
{
u ∈ H :

∫

RN

|u|2 dx = m

}
. (’fixed mass constraint’)

From the dynamical point of view, this minimization problem is more natural

then the one for the Sobolev quotient.

Both Ẽ and S(m) are invariant under the corresponding biharmonic nonlinear

Schrödinger flow.

=⇒ Orbital stability properties of the set of minimizers of Ẽ|S(m).
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(B)ε ∆2u+ 2∆u+ (1 + ε)u = |u|p−2u, u ∈ H2(RN ).

Ẽ(u) =

∫

RN

|∆u|2 dx− 2

∫

RN

|∇u|2 dx− 2

p

∫

RN

|u|p dx

S(m) :=
{
u ∈ H :

∫
RN |u|2 dx = m

}
. (’fixed mass constraint’)

The following result provides a link to ground state solutions of (B)ε.

Theorem (Fernández, Jeanjean, Mandel & Mariş, 2021)

For every m > 0, the infimum of Ẽ on S(m) is attained in the mass-subcritical

case

2 < p < max(4,
2(N + 5)

N + 1
), p < 2 +

8

N
.

Moreover, every minimizer u ∈ S(m) is a ground state solution of (B)ε for

some ε = ε(m), whereas ε(m) → 0+ as m → 0.
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Ẽ(u) =

∫

RN

|∆u|2 dx− 2

∫

RN

|∇u|2 dx− 2

p

∫

RN

|u|p dx

S(m) :=
{
u ∈ H :

∫
RN |u|2 dx = m

}
. (’fixed mass constraint’)



More symmetry breaking: Energy minimizers with fixed mass

(B)ε ∆2u+ 2∆u+ (1 + ε)u = |u|p−2u, u ∈ H2(RN ).

Ẽ(u) =

∫

RN

|∆u|2 dx− 2

∫

RN

|∇u|2 dx− 2

p

∫

RN

|u|p dx

S(m) :=
{
u ∈ H :

∫
RN |u|2 dx = m

}
. (’fixed mass constraint’)

Corollary (Lenzmann & W.)

Let N ≥ 2, and suppose that

2 < p <
14

3
if N = 2 and 2 < p < 2∗ if N ≥ 3.

Then there exists m0 = m0(p) > 0 with the property that for every

0 < m < m0(p) all minimizers of Ẽ on S(m) are nonradial functions.
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Consider the associated Dirichlet problem in the unit ball B = B1(0):

(DP)

{
∆2
u+ 2a∆u+ bu = |u|p−2

u in B,

u = ∂νu = 0 on ∂B.

Theorem (Lenzmann, W.)
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ε (p) in the limit ε → 0+.
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Rε(p) = inf
u∈H2(RN )\{0}
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∫
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e
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Consequently: ‖w̌‖p ≤ 1√
CST (p)

‖w‖L2(S) for every w ∈ L2(S).

Remarks

1. The exponent bound p ≥ 2∗ is sharp for this inequality (Knapp’s example)

2. The constants C(p) in the expansion for Rε(p) are related to CST (p).

In particular: C(p) = 2
π

CST (p) if 2∗ ≤ p < 2∗.
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|û(ξ)|2 dξ



Why is the Stein-Tomas inequality relevant here?

Recall that

Rε(p) = inf
u∈H2(RN )\{0}

qε(u)

‖u‖2
p

with

qε(u) =
∫
RN

(
|∆u|2−2|∇u|2+(1+ε)|u|2

)
dx =

∫
RN

[
(|ξ|2 − 1)2 + ε

]
︸ ︷︷ ︸

=:gε(|ξ|)
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As ε → 0+, Fourier transforms of minimizers are expected to concentrate near

the unit sphere S = {|ξ| = 1}
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◮ Minimizers exist in the endpoint case p = 2∗ if N = 2, 3 (Christ & Shao

2012, Shao 2016);

◮ Existence of minimizers is open in the case p = 2∗, N 6∈ {2, 3}
(conditional result by Frank, Lieb & Sabin 2016);

◮ Up to modulations, minimizers are real-valued, even, and nonnegative if

p ∈ 2N (Oliveira e Silva & Quilodran 2021);

◮ Real-valued minimizers are constant if 3 ≤ N ≤ 7 and p ∈ 2N, p ≥ 4

(Foschi 2015, Carneiro & Oliveira e Silva 2015, Oliveira e Silva &

Quilodran 2021)
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Lower bound:

Let uε ∈ H2(RN ) be an (Lp-normalized) optimizer for the Sobolev quotient

Rε(p).

Prove that ûε concentrates near S.

Apply ST-inequality to the functions ûε(r(·)) ∈ L2(S), 1 − δ ≤ r ≤ 1 + δ.
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Surprisingly, this is already the optimal exponent τ(N, p) = 3
4

+ 1
2p

− N
2

( 1
2

− 1
p

).
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|w̌δ| ≥ c1δ
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2 on Mδ := {(x′
, xN ) ∈ R

N : |x′| ≤ c2δ
− 1

2 , |xN | ≤ c2δ
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Since

|Mδ| ∼ δ
− N+1

2 ,

the pointwise inequality gives

‖w̌δ‖2
p ≥ c3δ

N−1− N+1
p

Consequently,

‖wδ‖2
L2(S)

‖w̌δ‖2
p

= O(δ
N+1

p
− N−1

2 ) → 0 as δ → 0,

as claimed.
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Moreover, by a somewhat more delicate estimate,

‖uε‖2
p ≥ κε
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Consequently,

q(uε)

‖uε‖2
p

= O
(
ε

3
4

+ 1
2p

− N
2

( 1
2

− 1
p

)
)

= O(ετ(N,p)) as ε → 0+.
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Indeed,

1̌S(x) = CN |x|−
N−2

2 JN−2
2

(|x|) and thus |1̌S(x)| ≤ C̃N (1 + |x|)− N−1
2

For radial functions, we may repeat previous estimates with CST (p) replaced by

Crad
ST (p).
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Here, again, (ii) is obtained from (i) by interpolating with the inequality

qε(u)

‖u‖2
≥ ε for all u ∈ H

2(RN )
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Since
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2

( 1
2

− 1
p

) >





1

2
for 2rad

∗ < p < 2∗,

1 −N(
1

2
− 1

p
) for 2 < p ≤ 2rad

∗ .

we conclude that for p ∈ (2, 2∗) there exists ε0 = ε0(p) with

R
rad
ε (p) > Rε(p) for 0 < ε < ε0(p).

Hence every ground state solution of (Bε) is nonradial in this case.

Special case N = 2: Recall that 2rad
∗ = 4 and 2∗ = 6.
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Many thanks!




